Using psychophysics to ask if the brain samples or maximizes.

The two-alternative forced-choice (2AFC) task is the workhorse of psychophysics and is used to measure the just-noticeable difference, generally assumed to accurately quantify sensory precision. However, this assumption is not true for all mechanisms of decision making. Here we derive the behavioral predictions for two popular mechanisms, sampling and maximum a posteriori, and examine how they affect the outcome of the 2AFC task. These predictions are used in a combined visual 2AFC and estimation experiment. Our results strongly suggest that subjects use a maximum a posteriori mechanism. Further, our derivations and experimental paradigm establish the already standard 2AFC task as a behavioral tool for measuring how humans make decisions under uncertainty.

[1]  C. Nadel Principles Of Animal Design The Optimization And Symmorphosis Debate , 2016 .

[2]  Adam Binch,et al.  Perception as Bayesian Inference , 2014 .

[3]  William K. Estes,et al.  Probability Learning and Sequence Learning , 2014 .

[4]  Thomas L. Griffiths,et al.  One and Done? Optimal Decisions From Very Few Samples , 2014, Cogn. Sci..

[5]  M. Shadlen,et al.  Decision Making as a Window on Cognition , 2013, Neuron.

[6]  M. Carandini,et al.  Population Rate Dynamics and Multineuron Firing Patterns in Sensory Cortex , 2012, The Journal of Neuroscience.

[7]  Hugo L. Fernandes,et al.  Differential Representations of Prior and Likelihood Uncertainty in the Human Brain , 2012, Current Biology.

[8]  Konrad Paul Kording,et al.  Temporal Integration of Olfactory Perceptual Evidence in Human Orbitofrontal Cortex , 2012, Neuron.

[9]  A. Pouget,et al.  Not Noisy, Just Wrong: The Role of Suboptimal Inference in Behavioral Variability , 2012, Neuron.

[10]  Christopher R Fetsch,et al.  Neural correlates of reliability-based cue weighting during multisensory integration , 2011, Nature Neuroscience.

[11]  Konrad Paul Kording,et al.  Sensory Cue Integration , 2011 .

[12]  Paul R. Schrater,et al.  How Haptic Size Sensations Improve Distance Perception , 2011, PLoS Comput. Biol..

[13]  Eero P. Simoncelli,et al.  Cardinal rules: Visual orientation perception reflects knowledge of environmental statistics , 2011, Nature Neuroscience.

[14]  József Fiser,et al.  Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment , 2011, Science.

[15]  Konrad Paul Kording,et al.  Learning Priors for Bayesian Computations in the Nervous System , 2010, PloS one.

[16]  Ulrik R. Beierholm,et al.  Probability Matching as a Computational Strategy Used in Perception , 2010, PLoS Comput. Biol..

[17]  P. Berkes,et al.  Statistically Optimal Perception and Learning: from Behavior to Neural Representations , 2022 .

[18]  W. Gaissmaier,et al.  The smart potential behind probability matching , 2008, Cognition.

[19]  Yutaka Sakai,et al.  When Does Reward Maximization Lead to Matching Law? , 2008, PloS one.

[20]  Yutaka Sakai,et al.  The Actor-Critic Learning Is Behind the Matching Law: Matching Versus Optimal Behaviors , 2008, Neural Computation.

[21]  Konrad Paul Kording,et al.  Decision Theory: What "Should" the Nervous System Do? , 2007, Science.

[22]  Michael S Landy,et al.  Combining Priors and Noisy Visual Cues in a Rapid Pointing Task , 2006, The Journal of Neuroscience.

[23]  Eero P. Simoncelli,et al.  Noise characteristics and prior expectations in human visual speed perception , 2006, Nature Neuroscience.

[24]  D. Burr,et al.  The Ventriloquist Effect Results from Near-Optimal Bimodal Integration , 2004, Current Biology.

[25]  Konrad Paul Kording,et al.  Bayesian integration in sensorimotor learning , 2004, Nature.

[26]  J. Saunders,et al.  Do humans optimally integrate stereo and texture information for judgments of surface slant? , 2003, Vision Research.

[27]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[28]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[29]  Aapo Hyvärinen,et al.  Interpreting Neural Response Variability as Monte Carlo Sampling of the Posterior , 2002, NIPS.

[30]  Nir Vulkan An Economist's Perspective on Probability Matching , 2000 .

[31]  K. Wells Principles of Animal Design: The Optimization and Symmorphosis Debate. Ewald R. Weibel , C. Richard Taylor , Liana Bolis , 1999 .

[32]  C. R. Taylor,et al.  Principles of Animal Design: The Optimization And Symmorphosis Debate , 1998 .

[33]  A. Yuille,et al.  Bayesian decision theory and psychophysics , 1996 .

[34]  W. Estes Toward a Statistical Theory of Learning. , 1994 .

[35]  L. Cosmides,et al.  The Adapted mind : evolutionary psychology and the generation of culture , 1992 .

[36]  J. M. Smith,et al.  Optimality theory in evolutionary biology , 1990, Nature.

[37]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[38]  David G. Stork,et al.  Pattern Classification , 1973 .

[39]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .