The Euclidean Adler function and its interplay with Δ α QED had $$ \Delta {\alpha}_{\textrm{QED}}^{\textrm{had}} $$ and α_s

[1]  F. Knechtli,et al.  Determination of $$\alpha _s(m_Z)$$ by the non-perturbative decoupling method , 2022, The European Physical Journal C.

[2]  G. Cvetič,et al.  Borel-Laplace Sum Rules with τ decay data, using OPE with improved anomalous dimensions , 2022, Journal of Physics G: Nuclear and Particle Physics.

[3]  S. Gottlieb,et al.  FLAG Review 2021 , 2021, The European Physical Journal C.

[4]  G. Cowan Effect of Systematic Uncertainty Estimation on the Muon g - 2 Anomaly , 2021, EPJ Web of Conferences.

[5]  M. Jamin Higher-order behaviour of two-point current correlators , 2021, The European Physical Journal Special Topics.

[6]  L. Debbio,et al.  Lattice determinations of the strong coupling , 2021, Physics Reports.

[7]  A. Pich Precision physics with inclusive QCD processes , 2020, 2012.04716.

[8]  C. DeTar,et al.  The anomalous magnetic moment of the muon in the Standard Model , 2020, Physics Reports.

[9]  M. Davier,et al.  Erratum to: A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α(mZ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{u , 2020, The European Physical Journal C.

[10]  T. Lippert,et al.  Leading hadronic contribution to the muon magnetic moment from lattice QCD , 2020, Nature.

[11]  D. Boito,et al.  Precise α determination from charmonium sum rules , 2019, 1912.06237.

[12]  S. Simula,et al.  Lepton anomalous magnetic moments in Lattice QCD+QED , 2019, 1910.03874.

[13]  P. Gubler,et al.  Recent progress in QCD condensate evaluations and sum rules , 2018, Progress in Particle and Nuclear Physics.

[14]  S. Narison m‾c,b, 〈αG2〉 and α from Heavy Quarkonia , 2018, Nuclear and Particle Physics Proceedings.

[15]  M. Davier,et al.  Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon $$g-2$$g-2 and $${\alpha (m_Z^2)}$$α(mZ2) using newest hadronic cross-section data , 2017, 1706.09436.

[16]  Matthias Steinhauser,et al.  Version 3 of RunDec and CRunDec , 2017, Comput. Phys. Commun..

[17]  R. Nisius On the combination of correlated estimates of a physics observable , 2014, 1402.4016.

[18]  M. Davier,et al.  Update of the ALEPH non-strange spectral functions from hadronic $$\tau $$τ decays , 2013, 1312.1501.

[19]  B. Malaescu,et al.  Evaluation of the strong coupling constant αS using the ATLAS inclusive jet cross-section data , 2012, 1203.5416.

[20]  T. Lippert,et al.  Lattice QCD at the physical point: Light quark masses , 2010, 1011.2403.

[21]  C. Sturm,et al.  Precise charm- and bottom-quark masses: Theoretical and experimental uncertainties , 2010, Theoretical and Mathematical Physics.

[22]  M. Davier,et al.  Reevaluation of the hadronic contribution to the muon magnetic anomaly using new e+e−→π+π− cross section data from BABAR , 2009, 0908.4300.

[23]  A. Maier,et al.  Low-energy moments of heavy quark current correlators at four loops , 2009, 0907.2117.

[24]  Y. Kiyo,et al.  Reconstruction of heavy quark current correlators at O(αs3) , 2009, 0907.2120.

[25]  A. Hoang,et al.  Heavy Quark Vacuum Polarization Function at O(alpha_s^2) and O(alpha_s^3) , 2008, 0807.4173.

[26]  A. Maier,et al.  The second physical moment of the heavy quark vector correlator at O (α s 3 ) , 2008, 0806.3405.

[27]  M. Beneke,et al.  alpha_s and the tau hadronic width: fixed-order, contour-improved and higher-order perturbation theory , 2008, 0806.3156.

[28]  A. Maier,et al.  Higher moments of heavy quark correlators in the low energy limit at O(αs2) , 2007, 0711.2636.

[29]  M. Czakon,et al.  Four-Loop Tadpoles: Applications in QCD , 2006, hep-ph/0607141.

[30]  C. Sturm,et al.  Four-loop moments of the heavy quark vacuum polarization function in perturbative QCD , 2006, hep-ph/0604234.

[31]  M. Czakon,et al.  The Four-loop QCD beta-function and anomalous dimensions , 2004, hep-ph/0411261.

[32]  K. Chetyrkin,et al.  Vacuum polarization in pQCD: first complete O(αs4) result , 2004 .

[33]  M. Jamin,et al.  Determination of ms and |Vus| from hadronic τ decays , 2002, hep-ph/0212230.

[34]  S. Groote,et al.  Low-energy gluon to the vacuum polarization of heavy quarks , 2001, hep-ph/0103047.

[35]  A. Pich,et al.  Strange quark mass determination from Cabibbo-suppressed tau decays , 1999, hep-ph/9909244.

[36]  J. Kuhn,et al.  Heavy quark vacuum polarisation to three loops , 1995, hep-ph/9511430.

[37]  A Pich Chiral perturbation theory , 1995, hep-ph/9502366.

[38]  J. Kuhn,et al.  Radiation of heavy quarks , 1994, hep-ph/9407338.

[39]  G. D'Agostini,et al.  On the use of the covariance matrix to fit correlated data , 1994 .

[40]  S. Generalis Improved two loop quark mass corrections , 1989 .

[41]  Heinrich Leutwyler,et al.  Chiral perturbation theory to one loop , 1984 .

[42]  A. Vladimirov,et al.  The gell-mann-low function of QCD in the three-loop approximation , 1980 .

[43]  F. Tkachov,et al.  Higher-order corrections to σtot(e+e−→ hadrons) in quantum chromodynamics , 1979 .

[44]  A. Vainshtein,et al.  QCD and Resonance Physics: Applications , 1979 .

[45]  A. Vainshtein,et al.  QCD and resonance physics. theoretical foundations , 1979 .

[46]  L. Okun,et al.  Charmonium and gluons , 1978 .

[47]  M. Davier,et al.  The Discrepancy Between τ and e + e − Spectral Functions Revisited and the Consequences for the Muon Magnetic Anomaly , 2009 .

[48]  Heinrich Leutwyler,et al.  Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark , 1985 .