The Euclidean Adler function and its interplay with Δ α QED had $$ \Delta {\alpha}_{\textrm{QED}}^{\textrm{had}} $$ and α_s
暂无分享,去创建一个
[1] F. Knechtli,et al. Determination of $$\alpha _s(m_Z)$$ by the non-perturbative decoupling method , 2022, The European Physical Journal C.
[2] G. Cvetič,et al. Borel-Laplace Sum Rules with τ decay data, using OPE with improved anomalous dimensions , 2022, Journal of Physics G: Nuclear and Particle Physics.
[3] S. Gottlieb,et al. FLAG Review 2021 , 2021, The European Physical Journal C.
[4] G. Cowan. Effect of Systematic Uncertainty Estimation on the Muon g - 2 Anomaly , 2021, EPJ Web of Conferences.
[5] M. Jamin. Higher-order behaviour of two-point current correlators , 2021, The European Physical Journal Special Topics.
[6] L. Debbio,et al. Lattice determinations of the strong coupling , 2021, Physics Reports.
[7] A. Pich. Precision physics with inclusive QCD processes , 2020, 2012.04716.
[8] C. DeTar,et al. The anomalous magnetic moment of the muon in the Standard Model , 2020, Physics Reports.
[9] M. Davier,et al. Erratum to: A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α(mZ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{u , 2020, The European Physical Journal C.
[10] T. Lippert,et al. Leading hadronic contribution to the muon magnetic moment from lattice QCD , 2020, Nature.
[11] D. Boito,et al. Precise α determination from charmonium sum rules , 2019, 1912.06237.
[12] S. Simula,et al. Lepton anomalous magnetic moments in Lattice QCD+QED , 2019, 1910.03874.
[13] P. Gubler,et al. Recent progress in QCD condensate evaluations and sum rules , 2018, Progress in Particle and Nuclear Physics.
[14] S. Narison. m‾c,b, 〈αG2〉 and α from Heavy Quarkonia , 2018, Nuclear and Particle Physics Proceedings.
[15] M. Davier,et al. Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon $$g-2$$g-2 and $${\alpha (m_Z^2)}$$α(mZ2) using newest hadronic cross-section data , 2017, 1706.09436.
[16] Matthias Steinhauser,et al. Version 3 of RunDec and CRunDec , 2017, Comput. Phys. Commun..
[17] R. Nisius. On the combination of correlated estimates of a physics observable , 2014, 1402.4016.
[18] M. Davier,et al. Update of the ALEPH non-strange spectral functions from hadronic $$\tau $$τ decays , 2013, 1312.1501.
[19] B. Malaescu,et al. Evaluation of the strong coupling constant αS using the ATLAS inclusive jet cross-section data , 2012, 1203.5416.
[20] T. Lippert,et al. Lattice QCD at the physical point: Light quark masses , 2010, 1011.2403.
[21] C. Sturm,et al. Precise charm- and bottom-quark masses: Theoretical and experimental uncertainties , 2010, Theoretical and Mathematical Physics.
[22] M. Davier,et al. Reevaluation of the hadronic contribution to the muon magnetic anomaly using new e+e−→π+π− cross section data from BABAR , 2009, 0908.4300.
[23] A. Maier,et al. Low-energy moments of heavy quark current correlators at four loops , 2009, 0907.2117.
[24] Y. Kiyo,et al. Reconstruction of heavy quark current correlators at O(αs3) , 2009, 0907.2120.
[25] A. Hoang,et al. Heavy Quark Vacuum Polarization Function at O(alpha_s^2) and O(alpha_s^3) , 2008, 0807.4173.
[26] A. Maier,et al. The second physical moment of the heavy quark vector correlator at O (α s 3 ) , 2008, 0806.3405.
[27] M. Beneke,et al. alpha_s and the tau hadronic width: fixed-order, contour-improved and higher-order perturbation theory , 2008, 0806.3156.
[28] A. Maier,et al. Higher moments of heavy quark correlators in the low energy limit at O(αs2) , 2007, 0711.2636.
[29] M. Czakon,et al. Four-Loop Tadpoles: Applications in QCD , 2006, hep-ph/0607141.
[30] C. Sturm,et al. Four-loop moments of the heavy quark vacuum polarization function in perturbative QCD , 2006, hep-ph/0604234.
[31] M. Czakon,et al. The Four-loop QCD beta-function and anomalous dimensions , 2004, hep-ph/0411261.
[32] K. Chetyrkin,et al. Vacuum polarization in pQCD: first complete O(αs4) result , 2004 .
[33] M. Jamin,et al. Determination of ms and |Vus| from hadronic τ decays , 2002, hep-ph/0212230.
[34] S. Groote,et al. Low-energy gluon to the vacuum polarization of heavy quarks , 2001, hep-ph/0103047.
[35] A. Pich,et al. Strange quark mass determination from Cabibbo-suppressed tau decays , 1999, hep-ph/9909244.
[36] J. Kuhn,et al. Heavy quark vacuum polarisation to three loops , 1995, hep-ph/9511430.
[37] A Pich. Chiral perturbation theory , 1995, hep-ph/9502366.
[38] J. Kuhn,et al. Radiation of heavy quarks , 1994, hep-ph/9407338.
[39] G. D'Agostini,et al. On the use of the covariance matrix to fit correlated data , 1994 .
[40] S. Generalis. Improved two loop quark mass corrections , 1989 .
[41] Heinrich Leutwyler,et al. Chiral perturbation theory to one loop , 1984 .
[42] A. Vladimirov,et al. The gell-mann-low function of QCD in the three-loop approximation , 1980 .
[43] F. Tkachov,et al. Higher-order corrections to σtot(e+e−→ hadrons) in quantum chromodynamics , 1979 .
[44] A. Vainshtein,et al. QCD and Resonance Physics: Applications , 1979 .
[45] A. Vainshtein,et al. QCD and resonance physics. theoretical foundations , 1979 .
[46] L. Okun,et al. Charmonium and gluons , 1978 .
[47] M. Davier,et al. The Discrepancy Between τ and e + e − Spectral Functions Revisited and the Consequences for the Muon Magnetic Anomaly , 2009 .
[48] Heinrich Leutwyler,et al. Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark , 1985 .