Probabilistic Spatially-Divided Multiple Access in Underwater Acoustic Sparse Networks

Deploying Autonomous Underwater Vehicles (AUVs) is a necessity to enable a range of civilian/military underwater applications; yet, achieving a reliable coordination among the vehicles is a challenging issue due to the time- and space-varying characteristics of the acoustic communication channel. The design of a Medium Access Control (MAC) based on a probabilistic Space Division Multiple Access (SDMA) method for short/medium distances (less than <inline-formula><tex-math notation="LaTeX">$2\; \mathrm {km}$</tex-math><alternatives><mml:math><mml:mrow><mml:mn>2</mml:mn><mml:mspace width="0.277778em"/><mml:mi> km </mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="rahmati-ieq1-2877683.gif"/></alternatives></inline-formula>) is presented. This method considers the inherent vehicle position uncertainty due to the inaccuracies in models and the drift of the vehicles. It minimizes the acoustic interference statistically by considering the angular position of neighboring vehicles via a two-step estimation and by keeping the transmitter antenna's beamwidth of each vehicle at an optimal value. Such value is chosen considering three contrasting goals, i.e.: <inline-formula><tex-math notation="LaTeX">$(i)$</tex-math><alternatives><mml:math><mml:mrow><mml:mo>(</mml:mo><mml:mi>i</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="rahmati-ieq2-2877683.gif"/></alternatives></inline-formula> spreading the signal beam towards the vehicle to combat position uncertainty using a coarse estimation; <inline-formula><tex-math notation="LaTeX">$(ii)$</tex-math><alternatives><mml:math><mml:mrow><mml:mo>(</mml:mo><mml:mi>i</mml:mi><mml:mi>i</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="rahmati-ieq3-2877683.gif"/></alternatives></inline-formula> focusing the beam to reduce acoustic energy dispersion through a fine estimation; and <inline-formula><tex-math notation="LaTeX">$(iii)$</tex-math><alternatives><mml:math><mml:mrow><mml:mo>(</mml:mo><mml:mi>i</mml:mi><mml:mi>i</mml:mi><mml:mi>i</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="rahmati-ieq4-2877683.gif"/></alternatives></inline-formula> minimizing interference to other vehicles. Simulation results in a sparse underwater network show that this approach mitigates interference, reduces the probability of retransmission, and achieves higher data rates over conventional underwater MAC techniques.

[1]  Huifang Chen,et al.  Toward Practical MAC Design for Underwater Acoustic Networks , 2013, IEEE Transactions on Mobile Computing.

[2]  Christophe Laot,et al.  Throughput-Efficient Super-TDMA MAC Transmission Schedules in Ad Hoc Linear Underwater Acoustic Networks , 2017, IEEE Journal of Oceanic Engineering.

[3]  Navrati Saxena,et al.  Next Generation 5G Wireless Networks: A Comprehensive Survey , 2016, IEEE Communications Surveys & Tutorials.

[4]  Jeffrey G. Andrews,et al.  Space Division Multiple Access With a Sum Feedback Rate Constraint , 2007, IEEE Transactions on Signal Processing.

[5]  C. W. Chan,et al.  Performance evaluation of UKF-based nonlinear filtering , 2006, Autom..

[6]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[7]  Chao Li,et al.  DTMAC: A Delay Tolerant MAC Protocol for Underwater Wireless Sensor Networks , 2016, IEEE Sensors Journal.

[8]  J. C. Hayya,et al.  A Note on the Ratio of Two Normally Distributed Variables , 1975 .

[9]  Sajad Saeedi,et al.  AUV Navigation and Localization: A Review , 2014, IEEE Journal of Oceanic Engineering.

[10]  Pravin Varaiya,et al.  Space division multiple access (SDMA) for robust ad hoc vehicle communication networks , 2001, ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585).

[11]  Dario Pompili,et al.  Collaborative Hybrid ARQ for CDMA-based Reliable Underwater Acoustic Communications , 2018, 2018 Fourth Underwater Communications and Networking Conference (UComms).

[12]  Milica Stojanovic,et al.  On the relationship between capacity and distance in an underwater acoustic communication channel , 2006, Underwater Networks.

[13]  Dario Pompili,et al.  SSFB: Signal-Space-Frequency Beamforming for Underwater Acoustic Video Transmission , 2017, 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS).

[14]  Shengli Zhou,et al.  OFDM for Underwater Acoustic Communications , 2014 .

[15]  Milica Stojanovic,et al.  On the relationship between capacity and distance in an underwater acoustic communication channel , 2007, MOCO.

[16]  Tsung-Hui Chang,et al.  Robust Hybrid Beamforming with Phased Antenna Arrays for Downlink SDMA in Indoor 60 GHz Channels , 2013, IEEE Transactions on Wireless Communications.

[17]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[18]  Emrecan Demirors,et al.  Advances in Underwater Acoustic Networking , 2013, Mobile Ad Hoc Networking.

[19]  Dario Pompili,et al.  uwMIMO-HARQ: Hybrid ARQ for Reliable Underwater Acoustic MIMO Communications , 2015, WUWNet.

[20]  R. E. Hudson,et al.  Acoustic sensor networks for woodpecker localization , 2005, SPIE Optics + Photonics.

[21]  George Casella,et al.  Statistical Inference Vol. 70 , 1990 .

[22]  Dario Pompili,et al.  SLAM-based Underwater Adaptive Sampling Using Autonomous Vehicles , 2018, OCEANS 2018 MTS/IEEE Charleston.

[23]  Milica Stojanovic,et al.  Underwater sensor networks: applications, advances and challenges , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  Milica Stojanovic,et al.  Underwater acoustic communication channels: Propagation models and statistical characterization , 2009, IEEE Communications Magazine.

[25]  L. Whitcomb,et al.  A SURVEY OF UNDERWATER VEHICLE NAVIGATION : RECENT ADVANCES AND NEW CHALLENGES , 2006 .

[26]  John S. Heidemann,et al.  Comparison and Evaluation of the T-Lohi MAC for Underwater Acoustic Sensor Networks , 2008, IEEE Journal on Selected Areas in Communications.

[27]  Jeffrey G. Andrews,et al.  Downlink SDMA with Limited Feedback in Interference-Limited Wireless Networks , 2011, IEEE Transactions on Wireless Communications.

[28]  Yi Pan,et al.  Underwater acoustic sensor networks , 2016, Int. J. Distributed Sens. Networks.

[29]  Dario Pompili,et al.  UNISeC: Inspection, Separation, and Classification of Underwater Acoustic Noise Point Sources , 2018, IEEE Journal of Oceanic Engineering.

[30]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[31]  Shengli Zhou,et al.  Throughput of Underwater Wireless Ad Hoc Networks With Random Access: A Physical Layer Perspective , 2015, IEEE Transactions on Wireless Communications.

[32]  Dario Pompili,et al.  Interference Cancellation in Multiuser Acoustic Underwater Networks Using Probabilistic SDMA , 2015, 2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems.

[33]  Dario Pompili,et al.  A CDMA-based Medium Access Control for UnderWater Acoustic Sensor Networks , 2009, IEEE Transactions on Wireless Communications.

[34]  Siegfried Schaible,et al.  Fractional Programming , 2009, Encyclopedia of Optimization.

[35]  G. Marsaglia Ratios of Normal Variables , 2006 .

[36]  Roberto Petroccia,et al.  Performance Evaluation of Underwater Medium Access Control Protocols: At-Sea Experiments , 2018, IEEE Journal of Oceanic Engineering.

[37]  Charles H. Sherman,et al.  Transducers and Arrays for Underwater Sound , 2008 .

[38]  R. King Electromagnetic waves and antennas above and below the surface of the earth , 1979 .

[39]  Xiang Cheng,et al.  Cooperative OFDM Underwater Acoustic Communications , 2016 .

[40]  Werner Dinkelbach On Nonlinear Fractional Programming , 1967 .

[41]  Baozhi Chen,et al.  Trajectory-Aware Communication Solution for Underwater Gliders Using WHOI Micro-Modems , 2010, 2010 7th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON).

[42]  M. Gerla,et al.  AUV-Aided Localization for Underwater Sensor Networks , 2007, International Conference on Wireless Algorithms, Systems and Applications (WASA 2007).