Multiple Gate Field-Effect Transistors for Future CMOS Technologies

AbstractThis is a review paper on the topic of multiple gate field effect transistors: MuGFETs, or FinFETs, as they are called. First, the motivation behind multiple gate FETs is presented. This is followed by looking at the evolution of FinFET technologies; the main flavors (variants) of multigate FETs; and their advantages/disadvantages. The physics and technology of these devices is briefly discussed. Results are then presented which show the performance figures of merit of FinFETs, and their strengths and weaknesses. Finally, a perspective on the future of the FinFET technology is presented. This paper is a judicious mix of the author’s original work on FinFETs and other contemporary know-how available in the literature on this topic.

[1]  Y. Yeo,et al.  25 nm CMOS Omega FETs , 2002, Digest. International Electron Devices Meeting,.

[2]  Tzuen-Hsi Huang,et al.  Back-gate forward bias method for low-voltage CMOS digital circuits , 1996 .

[3]  Ying Zhang,et al.  Extension and source/drain design for high-performance FinFET devices , 2003 .

[4]  H.-S. Philip Wong Beyond the conventional transistor , 2002, IBM J. Res. Dev..

[5]  C. Hu,et al.  Nanoscale CMOS spacer FinFET for the terabit era , 2002 .

[6]  H. Wong,et al.  CMOS scaling into the nanometer regime , 1997, Proc. IEEE.

[7]  H.-S.P. Wong,et al.  Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[8]  R. Rooyackers,et al.  Doubling or quadrupling MuGFET fin integration scheme with higher pattern fidelity, lower CD variation and higher layout efficiency , 2006, 2006 International Electron Devices Meeting.

[9]  Edward J. Nowak,et al.  Maintaining the benefits of CMOS scaling when scaling bogs down , 2002, IBM J. Res. Dev..

[10]  R. Rooyackers,et al.  Minimization of the MuGFET contact resistance by integration of NiSi contacts on epitaxially raised source/drain regions , 2005, Proceedings of 35th European Solid-State Device Research Conference, 2005. ESSDERC 2005..

[11]  A.P. Johnson,et al.  A sub 40-nm body thickness n-type FinFET , 2001, Device Research Conference. Conference Digest (Cat. No.01TH8561).

[12]  Jean-Pierre Colinge,et al.  Multiple-gate SOI MOSFETs , 2004 .

[13]  D. Hisamoto,et al.  A fully depleted lean-channel transistor (DELTA)-a novel vertical ultrathin SOI MOSFET , 1990, IEEE Electron Device Letters.

[14]  Joachim Keinert,et al.  Scaling beyond the 65 nm node with FinFET-DGCMOS , 2003, Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003..

[15]  Chenming Hu,et al.  Sub-60-nm quasi-planar FinFETs fabricated using a simplified process , 2001, IEEE Electron Device Letters.

[16]  D. Hisamoto FD/DG-SOI MOSFET-a viable approach to overcoming the device scaling limit , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[17]  E. Nowak,et al.  High-performance symmetric-gate and CMOS-compatible V/sub t/ asymmetric-gate FinFET devices , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[18]  R. Rooyackers,et al.  Integration challenges for multi-gate devices , 2005, 2005 International Conference on Integrated Circuit Design and Technology, 2005. ICICDT 2005..

[19]  N. Collaert,et al.  Analysis of the parasitic S/D resistance in multiple-gate FETs , 2005, IEEE Transactions on Electron Devices.

[20]  Chenming Hu,et al.  Sub 50-nm FinFET: PMOS , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[21]  J. Bokor,et al.  A dynamic threshold voltage MOSFET (DTMOS) for very low voltage operation , 1994, IEEE Electron Device Letters.

[22]  C. Hu,et al.  FinFET-a self-aligned double-gate MOSFET scalable to 20 nm , 2000 .

[23]  C. Hu,et al.  A spacer patterning technology for nanoscale CMOS , 2002 .

[24]  Bin Yu,et al.  FinFET scaling to 10 nm gate length , 2002, Digest. International Electron Devices Meeting,.

[25]  Jong-Ho Lee,et al.  Super self-aligned double-gate (SSDG) MOSFETs utilizing oxidation rate difference and selective epitaxy , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[26]  Chenming Hu,et al.  Spacer FinFET: nano-scale CMOS technology for the terabit era , 2001, 2001 International Semiconductor Device Research Symposium. Symposium Proceedings (Cat. No.01EX497).

[27]  David J. Frank,et al.  Nanoscale CMOS , 1999, Proc. IEEE.

[28]  Jeffrey Bokor,et al.  Extremely scaled silicon nano-CMOS devices , 2003, Proc. IEEE.

[29]  P. Kinget,et al.  0.5-V analog circuit techniques and their application in OTA and filter design , 2005, IEEE Journal of Solid-State Circuits.

[30]  T. Skotnicki,et al.  The end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performance , 2005, IEEE Circuits and Devices Magazine.