A 0.7V single-supply SRAM with 0.495um2 cell in 65nm technology utilizing self-write-back sense amplifier and cascaded bit line scheme
暂无分享,去创建一个
T. Sasaki | K. Kushida | A. Suzuki | G. Fukano | A. Kawasumi | O. Hirabayashi | Y. Takeyama | A. Katayama | Y. Fujimura | T. Yabe | K. Kushida | A. Suzuki | G. Fukano | A. Kawasumi | O. Hirabayashi | Y. Takeyama | T. Sasaki | A. Katayama | Y. Fujimura | T. Yabe
[1] M. Immediato,et al. A pico-joule class, 1 GHz, 32 KByte/spl times/64 b DSP SRAM with self reverse bias , 2003, 2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408).
[2] N. Vallepalli,et al. A 3-GHz 70-mb SRAM in 65-nm CMOS technology with integrated column-based dynamic power supply , 2005, IEEE Journal of Solid-State Circuits.
[3] H. Yamauchi,et al. A Stable SRAM Cell Design Against Simultaneously R/W Disturbed Accesses , 2006, 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers..
[4] M. Khellah,et al. A 256-Kb Dual-${V}_{\rm CC}$ SRAM Building Block in 65-nm CMOS Process With Actively Clamped Sleep Transistor , 2007, IEEE Journal of Solid-State Circuits.
[5] Leland Chang,et al. A 5.3GHz 8T-SRAM with Operation Down to 0.41V in 65nm CMOS , 2007, 2007 IEEE Symposium on VLSI Circuits.
[6] H. Pilo,et al. An SRAM Design in 65-nm Technology Node Featuring Read and Write-Assist Circuits to Expand Operating Voltage , 2007, IEEE Journal of Solid-State Circuits.
[7] O. Takahashi,et al. Implementation of the Cell Broadband Engine™ in 65 nm SOI Technology Featuring Dual Power Supply SRAM Arrays Supporting 6 GHz at 1.3 V , 2008, IEEE Journal of Solid-State Circuits.
[8] C. Radens,et al. A Sub-600-mV, Fluctuation Tolerant 65-nm CMOS SRAM Array With Dynamic Cell Biasing , 2008, IEEE Journal of Solid-State Circuits.
[9] Atsushi Kawasumi,et al. A Single-Power-Supply 0.7V 1GHz 45nm SRAM with An Asymmetrical Unit-ß-ratio Memory Cell , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.