A New Operator Splitting Method for the Euler Elastica Model for Image Smoothing

Euler’s elastica model has a wide range of applications in Image Processing and Computer Vision. However, the non-convexity, the non-smoothness and the nonlinearity of the associated energy functional make its minimization a challenging task, further complicated by the presence of high order derivatives in the model. In this article we propose a new operator-splitting algorithm to minimize the Euler elastica functional. This algorithm is obtained by applying an operator-splitting based time discretization scheme to an initial value problem (dynamical flow) associated with the optimality system (a system of multivalued equations). The sub-problems associated with the three fractional steps of the splitting scheme have either closed form solutions or can be handled by fast dedicated solvers. Compared with earlier approaches relying on ADMM (Alternating Direction Method of Multipliers), the new method has, essentially, only the time discretization step as free parameter to choose, resulting in a very robust and stable algorithm. The simplicity of the sub-problems and its modularity make this algorithm quite efficient. Applications to the numerical solution of smoothing test problems demonstrate the efficiency and robustness of the proposed methodology.

[1]  Andrea L. Bertozzi,et al.  Higher-Order Feature-Preserving Geometric Regularization , 2010, SIAM J. Imaging Sci..

[2]  Xue-Cheng Tai,et al.  Image Segmentation Using Euler’s Elastica as the Regularization , 2013, J. Sci. Comput..

[3]  Wei Zhu,et al.  Illusory Shapes via Corner Fusion , 2014, SIAM J. Imaging Sci..

[4]  Daniel Cremers,et al.  Curvature regularity for region-based image segmentation and inpainting: A linear programming relaxation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[5]  Gabriele Steidl,et al.  Removing Multiplicative Noise by Douglas-Rachford Splitting Methods , 2010, Journal of Mathematical Imaging and Vision.

[6]  Wotao Yin,et al.  Splitting Methods in Communication, Imaging, Science, and Engineering , 2017 .

[7]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[8]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[9]  J. Duan,et al.  A SIMPLE FAST ALGORITHM FOR MINIMIZATION OF THE ELASTICA ENERGY COMBING BINARY AND LEVEL SET REPRESENTATIONS , 2017 .

[10]  Selim Esedoglu,et al.  Segmentation with Depth but Without Detecting Junctions , 2004, Journal of Mathematical Imaging and Vision.

[11]  Chengzhi Deng,et al.  Fast Linearized Augmented Lagrangian Method for Euler’s Elastica Model , 2017 .

[12]  Mingqiang Zhu,et al.  An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .

[13]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[14]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[15]  Alfred M. Bruckstein,et al.  Discrete elastica , 1996, DGCI.

[16]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[17]  Steven J. Ruuth,et al.  Threshold dynamics for shape reconstruction and disocclusion , 2005, IEEE International Conference on Image Processing 2005.

[18]  Ke-long Chen,et al.  A new augmented Lagrangian primal dual algorithm for elastica regularization , 2016 .

[19]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[20]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[21]  Xiaoqun Zhang,et al.  A General Framework for a Class of First Order Primal-Dual Algorithms for TV Minimization , 2009 .

[22]  Roland Glowinski,et al.  On the Numerical Simulation of Viscoplastic Fluid Flow , 2011 .

[23]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[24]  Antonin Chambolle,et al.  Total Variation in Imaging , 2015, Handbook of Mathematical Methods in Imaging.

[25]  Thomas Pock,et al.  A Convex, Lower Semicontinuous Approximation of Euler's Elastica Energy , 2015, SIAM J. Math. Anal..

[26]  Tieyong Zeng,et al.  A Two-Stage Image Segmentation Method Using Euler's Elastica Regularized Mumford-Shah Model , 2014, 2014 22nd International Conference on Pattern Recognition.

[27]  Xue-Cheng Tai,et al.  A Fast Algorithm for Euler's Elastica Model Using Augmented Lagrangian Method , 2011, SIAM J. Imaging Sci..

[28]  A. Chambolle,et al.  Geometric properties of solutions to the total variation denoising problem , 2016, 1602.00087.

[29]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[30]  Xue-Cheng Tai,et al.  Some Facts About Operator-Splitting and Alternating Direction Methods , 2016 .

[31]  Maryam Yashtini,et al.  A Fast Relaxed Normal Two Split Method and an Effective Weighted TV Approach for Euler's Elastica Image Inpainting , 2016, SIAM J. Imaging Sci..

[32]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[33]  Xue-Cheng Tai,et al.  Augmented Lagrangian Method, Dual Methods, and Split Bregman Iteration for ROF, Vectorial TV, and High Order Models , 2010, SIAM J. Imaging Sci..

[34]  Antonin Chambolle,et al.  Total roto-translational variation , 2017, Numerische Mathematik.

[35]  Xue-Cheng Tai,et al.  Augmented Lagrangian Method, Dual Methods and Split Bregman Iteration for ROF Model , 2009, SSVM.

[36]  Ernie Esser,et al.  Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman , 2009 .

[37]  Roland Glowinski,et al.  On the numerical simulation of Bingham visco-plastic flow: Old and new results , 2007 .

[38]  Jean-Michel Morel,et al.  On a variational theory of image amodal completion , 2006 .

[39]  Vladimir Kolmogorov,et al.  Total Variation on a Tree , 2015, SIAM J. Imaging Sci..

[40]  Juan Shi,et al.  Graph Cuts for Curvature Based Image Denoising , 2011, IEEE Transactions on Image Processing.

[41]  Gilles Aubert,et al.  Efficient Schemes for Total Variation Minimization Under Constraints in Image Processing , 2009, SIAM J. Sci. Comput..

[42]  Tony F. Chan,et al.  Segmentation with Depth: A Level Set Approach , 2006, SIAM J. Sci. Comput..

[43]  Jean-Michel Morel,et al.  Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[44]  Maryam Yashtini,et al.  Alternating Direction Method of Multiplier for Euler's Elastica-Based Denoising , 2015, SSVM.

[45]  Tony F. Chan,et al.  Image Denoising Using Mean Curvature of Image Surface , 2012, SIAM J. Imaging Sci..

[46]  Xuecheng Tai,et al.  Augmented Lagrangian method for an Euler's elastica based segmentation model that promotes convex contours , 2017 .

[47]  Leo Grady,et al.  Fast global optimization of curvature , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[48]  Stanley Osher,et al.  A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2010, J. Sci. Comput..

[49]  Antonin Chambolle,et al.  An Upwind Finite-Difference Method for Total Variation-Based Image Smoothing , 2011, SIAM J. Imaging Sci..

[50]  Yu Wang,et al.  A Fast Augmented Lagrangian Method for Euler’s Elastica Models , 2013 .

[51]  David Mumford,et al.  Filtering, Segmentation and Depth , 1993, Lecture Notes in Computer Science.