Classical Physics and the Bounds of Quantum Correlations.

A unifying principle explaining the numerical bounds of quantum correlations remains elusive, despite the efforts devoted to identifying it. Here, we show that these bounds are indeed not exclusive to quantum theory: for any abstract correlation scenario with compatible measurements, models based on classical waves produce probability distributions indistinguishable from those of quantum theory and, therefore, share the same bounds. We demonstrate this finding by implementing classical microwaves that propagate along meter-size transmission-line circuits and reproduce the probabilities of three emblematic quantum experiments. Our results show that the "quantum" bounds would also occur in a classical universe without quanta. The implications of this observation are discussed.

[1]  A. Winter,et al.  Information causality as a physical principle , 2009, Nature.

[2]  Markus P. Mueller,et al.  A derivation of quantum theory from physical requirements , 2010, 1004.1483.

[3]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[4]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[5]  Pawel Blasiak Classical systems can be contextual too: Analogue of the Mermin-Peres square , 2015 .

[6]  M. Bourennane,et al.  State-independent quantum contextuality with single photons. , 2009, Physical review letters.

[7]  Adán Cabello,et al.  Simple Explanation of the Quantum Limits of Genuine n-Body Nonlocality. , 2014, Physical review letters.

[8]  Hans Halvorson,et al.  Deep beauty : understanding the quantum world through mathematical innovation , 2011 .

[9]  A. Cabello Experimentally testable state-independent quantum contextuality. , 2008, Physical review letters.

[10]  G. D’Ariano,et al.  Informational derivation of quantum theory , 2010, 1011.6451.

[11]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[12]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[13]  S. Sponar,et al.  Improvement of the polarized neutron interferometer setup demonstrating violation of a Bell-like inequality , 2014, Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment.

[14]  Gilles Brassard,et al.  Cost of Exactly Simulating Quantum Entanglement with Classical Communication , 1999 .

[15]  R. Loidl,et al.  Engineering of triply entangled states in a single-neutron system , 2009, 0908.0623.

[16]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[17]  M. A. Can,et al.  Simple test for hidden variables in spin-1 systems. , 2007, Physical review letters.

[18]  Weinfurter,et al.  Experiments towards falsification of noncontextual hidden variable theories , 2000, Physical review letters.

[19]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[20]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[21]  O. Gühne,et al.  State-independent experimental test of quantum contextuality , 2009, Nature.

[22]  Travis Norsen,et al.  Bell's theorem , 2011, Scholarpedia.

[23]  T. Jennewein,et al.  Experimental three-photon quantum nonlocality under strict locality conditions , 2013, Nature Photonics.

[24]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[25]  Otfried Guhne,et al.  Memory cost of quantum contextuality , 2010, 1007.3650.

[26]  Nicolas Gisin,et al.  Bell inequality for quNits with binary measurements , 2003, Quantum Inf. Comput..

[27]  Explicit contextualized hidden-variable model replicating an indivisible quantum system , 2013, 1306.6801.

[28]  Brian R. La Cour,et al.  Quantum contextuality in the Mermin-Peres square : A hidden-variable perspective , 2009, 2105.00940.

[29]  A. Cabello Simple explanation of the quantum violation of a fundamental inequality. , 2012, Physical review letters.

[30]  Christian Kurtsiefer,et al.  Approaching Tsirelson's Bound in a Photon Pair Experiment. , 2015, Physical review letters.

[31]  M. Navascués,et al.  A glance beyond the quantum model , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.