Beta-Layering in Foam-Lined Surrogate IFE Targets

Abstract Solid deuterium-tritium (the symbol DT is used here to represent the equilibrium mixture of 50% deuterium and 50% tritium, having the molecular composition: 25% D2, 50% deuterium tritide molecules, and 25% T2) (DT) is nucleated from DT-wetted foam and subsequently forms a uniform layer by the beta-layering phenomenon. Compared to DT frozen on smooth metal surfaces, the surface roughness of the inner-lying pure DT solid-vapor interface is substantially lower at all modal values higher than ~10, possibly due to the small-grain-size polycrystalline nature of the solid. For thick layers, deleterious effects are observed, notably the formation of DT-rich vapor voids in the foam matrix and the subsequent propagation of these voids into the pure solid DT layer.

[1]  E. Mapoles,et al.  Surface roughness measurements of beta-layered solid deuterium-tritium in toroidal geometries , 1996 .

[2]  J. Hoffer,et al.  Surface roughness statistics and temperature step stress effects for D-T solid layers equilibrated inside a 2 mm beryllium torus , 1998 .

[3]  Nakai,et al.  Feed-out of rear surface perturbation due to rarefaction wave in laser-irradiated targets , 2000, Physical review letters.

[4]  R. Cook,et al.  Resorcinol/formaldehyde foam shell targets for ICF , 1995 .

[5]  Denis G. Colombant,et al.  Direct-drive laser fusion: status and prospects , 1998 .

[6]  P. Souers,et al.  Hydrogen Properties for Fusion Energy , 1986 .

[7]  Takayoshi Norimatsu,et al.  Fabrication of a cryogenic foam target for inertial confinement fusion experiments , 1988 .

[8]  G. Magelssen,et al.  Feedout coupling of Richtmyer–Meshkov and Rayleigh–Taylor instabilities in stratified, radiation-driven foils , 1999 .

[9]  Nelson M. Hoffman,et al.  The feedout process: Rayleigh–Taylor and Richtmyer–Meshkov instabilities in uniform, radiation-driven foils , 1999 .

[10]  J. Pipes,et al.  Cryogenic D-T fuel layers formed in 1 mm spheres by beta-layering , 1997 .

[11]  Denis G. Colombant,et al.  High-gain direct-drive target design for laser fusion , 2000 .

[12]  Richard A. Sacks,et al.  Direct drive cryogenic ICF capsules employing D-T wetted foam , 1987 .

[13]  E. Mapoles,et al.  High-Resolution Optical Measurements of Surface Roughness for Beta-Layered Deuterium-Tritium Solid Inside a Re-Entrant Copper Cylinder , 1996 .

[14]  D. Schroen,et al.  Development of Divinylbenzene Foam Shells for Use as Inertial Fusion Energy Reactor Targets , 2003 .

[15]  J. Hoffer,et al.  Radioactively induced sublimation in solid tritium. , 1988, Physical review letters.

[16]  J. Hoffer,et al.  Uniform solid deuterium–tritium fuel layers resulting from radioactively induced sublimation , 1989 .