Influence of synthesis atmosphere on the solid solubility of uranium at B-site of Nd2Zr2O7 pyrochlore
暂无分享,去创建一个
S. Jha | G. Patkare | P. G. Behere | S. Kesari | M. Shafeeq | R. Phatak | S. Mishra | Chiranjit Nandi | A. Prakash | Rekha Rao
[1] Jian‐Qiang Wang,et al. Atomic controllable anchoring of uranium into zirconate pyrochlore with ultrahigh loading capacity. , 2022, Chemical communications.
[2] Zhiwei Hu,et al. Controllable sites and high-capacity immobilization of uranium in Nd2Zr2O7 pyrochlore , 2022, Journal of synchrotron radiation.
[3] R. Rao,et al. Phase evolution in [Nd1-xUx]2Zr2O7+δ system in oxidizing and reducing conditions: A nuclear waste form , 2021 .
[4] Qingyun Chen,et al. Solubility, structure transition and chemical durability of Th-doped Nd2Zr2O7 pyrochlore , 2021, Progress in Nuclear Energy.
[5] R. Rao,et al. Effect of Ce4+-substitution at A and B sites of Nd2Zr2O7: A study for plutonium incorporation in pyrochlores , 2020 .
[6] Z. Tang,et al. Uranium-Incorporated Pyrochlore La2(UxMgxZr1-2x)2O7 Nuclear Waste Form: Structure and Phase Stability. , 2020, Inorganic chemistry.
[7] P. Kowalski,et al. Insights into the fabrication and structure of plutonium pyrochlores , 2020, Journal of Materials Chemistry A.
[8] V. Shutthanandan,et al. Radiation damage of hollandite in multiphase ceramic waste forms , 2017 .
[9] A. K. Tyagi,et al. ZrO2-NdO1.5 system: Investigations of phase relation and thermophysical properties , 2017 .
[10] A. K. Tyagi,et al. Utilizing non-stoichiometry in Nd2Zr2O7 pyrochlore: exploring superior ionic conductors , 2016 .
[11] S. M. Lee,et al. Lattice Parameter Behavior with Different Nd and O Concentrations in (U1−yNdy)O2±X Solid Solution , 2016 .
[12] F. Ye,et al. Phase Structure Evolution and Thermo‐Physical Properties of Nonstoichiometry Nd2−xZr2+xO7+x/2 Pyrochlore Ceramics , 2015 .
[13] N. K. Sahoo,et al. A comprehensive facility for EXAFS measurements at the INDUS-2 synchrotron source at RRCAT, Indore, India , 2014 .
[14] P. Glatzel,et al. Chemical state of complex uranium oxides. , 2013, Physical review letters.
[15] E. Vance,et al. Crystal chemistry and structures of uranium-doped gadolinium zirconates , 2013 .
[16] B. Mandal,et al. Order–disorder transition in the Nd2−yYyZr2O7 system: Probed by X-ray diffraction and Raman spectroscopy , 2010 .
[17] Jyhfu Lee,et al. XANES Spectroscopic Studies of the Phase Transition in Gd2Zr2O7 , 2009 .
[18] J. Somers,et al. Actinide incorporation in a zirconia based pyrochlore (Nd1.8An0.2)Zr2O7+x (An=Th, U, Np, Pu, Am) , 2009 .
[19] R. Ewing. Ceramic matrices for plutonium disposition , 2007 .
[20] Materials Section,et al. Management of reprocessed uranium : current status and future prospects , 2007 .
[21] G. Lumpkin,et al. Ceramic waste forms for actinides , 2006 .
[22] M Newville,et al. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.
[23] R. Madhavan,et al. Actinide immobilization in crystalline matrix: a study of uranium incorporation in gadolinium zirconate , 2005 .
[24] Jie Lian,et al. Nuclear waste disposal—pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides , 2004 .
[25] Hartmann,et al. Radiation tolerance of complex oxides , 2000, Science.
[26] Yingjie Zhang,et al. Durabilities of Pyrochlore-Rich Titanate Ceramics Designed for Immobilization of Surplus Plutonium , 2000 .
[27] C. W. Forsberg,et al. Uranium-233 waste definition: Disposal options, safeguards, criticality control, and arms control , 1998 .
[28] A. E. Ringwood,et al. Immobilization of high-level waste in ceramic waste forms , 1986, Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences.
[29] E. Husson,et al. Rare‐earth titanates and stannates of pyrochlore structure; vibrational spectra and force fields , 1983 .
[30] G. V. Subba Rao,et al. Oxide pyrochlores — A review , 1983 .
[31] A. Burggraaf,et al. Neutron Powder Diffraction Studies of Fluorite and Pyrochlore NdxZr1-xO2-x/2 Solid Solutions with 0.25 , 1980 .
[32] W. Davies,et al. A rapid and specific titrimetric method for the precise determination of uranium using iron(II) sulphate as reductant , 1964 .
[33] F. Hund,et al. Über weitere Fluoritphasen in den Mischoxyden Seltener Erden mit Uran. Untersuchungen der Systeme La2 O3, Nd2 O3, Sm2 O3, Yb2 O3, Sc2 O3 mit U3 O8 , 1952 .