Influence of synthesis atmosphere on the solid solubility of uranium at B-site of Nd2Zr2O7 pyrochlore

[1]  Jian‐Qiang Wang,et al.  Atomic controllable anchoring of uranium into zirconate pyrochlore with ultrahigh loading capacity. , 2022, Chemical communications.

[2]  Zhiwei Hu,et al.  Controllable sites and high-capacity immobilization of uranium in Nd2Zr2O7 pyrochlore , 2022, Journal of synchrotron radiation.

[3]  R. Rao,et al.  Phase evolution in [Nd1-xUx]2Zr2O7+δ system in oxidizing and reducing conditions: A nuclear waste form , 2021 .

[4]  Qingyun Chen,et al.  Solubility, structure transition and chemical durability of Th-doped Nd2Zr2O7 pyrochlore , 2021, Progress in Nuclear Energy.

[5]  R. Rao,et al.  Effect of Ce4+-substitution at A and B sites of Nd2Zr2O7: A study for plutonium incorporation in pyrochlores , 2020 .

[6]  Z. Tang,et al.  Uranium-Incorporated Pyrochlore La2(UxMgxZr1-2x)2O7 Nuclear Waste Form: Structure and Phase Stability. , 2020, Inorganic chemistry.

[7]  P. Kowalski,et al.  Insights into the fabrication and structure of plutonium pyrochlores , 2020, Journal of Materials Chemistry A.

[8]  V. Shutthanandan,et al.  Radiation damage of hollandite in multiphase ceramic waste forms , 2017 .

[9]  A. K. Tyagi,et al.  ZrO2-NdO1.5 system: Investigations of phase relation and thermophysical properties , 2017 .

[10]  A. K. Tyagi,et al.  Utilizing non-stoichiometry in Nd2Zr2O7 pyrochlore: exploring superior ionic conductors , 2016 .

[11]  S. M. Lee,et al.  Lattice Parameter Behavior with Different Nd and O Concentrations in (U1−yNdy)O2±X Solid Solution , 2016 .

[12]  F. Ye,et al.  Phase Structure Evolution and Thermo‐Physical Properties of Nonstoichiometry Nd2−xZr2+xO7+x/2 Pyrochlore Ceramics , 2015 .

[13]  N. K. Sahoo,et al.  A comprehensive facility for EXAFS measurements at the INDUS-2 synchrotron source at RRCAT, Indore, India , 2014 .

[14]  P. Glatzel,et al.  Chemical state of complex uranium oxides. , 2013, Physical review letters.

[15]  E. Vance,et al.  Crystal chemistry and structures of uranium-doped gadolinium zirconates , 2013 .

[16]  B. Mandal,et al.  Order–disorder transition in the Nd2−yYyZr2O7 system: Probed by X-ray diffraction and Raman spectroscopy , 2010 .

[17]  Jyhfu Lee,et al.  XANES Spectroscopic Studies of the Phase Transition in Gd2Zr2O7 , 2009 .

[18]  J. Somers,et al.  Actinide incorporation in a zirconia based pyrochlore (Nd1.8An0.2)Zr2O7+x (An=Th, U, Np, Pu, Am) , 2009 .

[19]  R. Ewing Ceramic matrices for plutonium disposition , 2007 .

[20]  Materials Section,et al.  Management of reprocessed uranium : current status and future prospects , 2007 .

[21]  G. Lumpkin,et al.  Ceramic waste forms for actinides , 2006 .

[22]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[23]  R. Madhavan,et al.  Actinide immobilization in crystalline matrix: a study of uranium incorporation in gadolinium zirconate , 2005 .

[24]  Jie Lian,et al.  Nuclear waste disposal—pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides , 2004 .

[25]  Hartmann,et al.  Radiation tolerance of complex oxides , 2000, Science.

[26]  Yingjie Zhang,et al.  Durabilities of Pyrochlore-Rich Titanate Ceramics Designed for Immobilization of Surplus Plutonium , 2000 .

[27]  C. W. Forsberg,et al.  Uranium-233 waste definition: Disposal options, safeguards, criticality control, and arms control , 1998 .

[28]  A. E. Ringwood,et al.  Immobilization of high-level waste in ceramic waste forms , 1986, Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences.

[29]  E. Husson,et al.  Rare‐earth titanates and stannates of pyrochlore structure; vibrational spectra and force fields , 1983 .

[30]  G. V. Subba Rao,et al.  Oxide pyrochlores — A review , 1983 .

[31]  A. Burggraaf,et al.  Neutron Powder Diffraction Studies of Fluorite and Pyrochlore NdxZr1-xO2-x/2 Solid Solutions with 0.25 , 1980 .

[32]  W. Davies,et al.  A rapid and specific titrimetric method for the precise determination of uranium using iron(II) sulphate as reductant , 1964 .

[33]  F. Hund,et al.  Über weitere Fluoritphasen in den Mischoxyden Seltener Erden mit Uran. Untersuchungen der Systeme La2 O3, Nd2 O3, Sm2 O3, Yb2 O3, Sc2 O3 mit U3 O8 , 1952 .