SuperMatching: Feature Matching Using Supersymmetric Geometric Constraints

Feature matching is a challenging problem at the heart of numerous computer graphics and computer vision applications. We present the SuperMatching algorithm for finding correspondences between two sets of features. It does so by considering triples or higher order tuples of points, going beyond the pointwise and pairwise approaches typically used. SuperMatching is formulated using a supersymmetric tensor representing an affinity metric that takes into account feature similarity and geometric constraints between features: Feature matching is cast as a higher order graph matching problem. SuperMatching takes advantage of supersymmetry to devise an efficient sampling strategy to estimate the affinity tensor, as well as to store the estimated tensor compactly. Matching is performed by an efficient higher order power iteration approach that takes advantage of this compact representation. Experiments on both synthetic and real data show that SuperMatching provides more accurate feature matching than other state-of-the-art approaches for a wide range of 2D and 3D features, with competitive computational cost.

[1]  Hao Li,et al.  Global Correspondence Optimization for Non‐Rigid Registration of Depth Scans , 2008, Comput. Graph. Forum.

[2]  Phillip A. Regalia,et al.  On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..

[3]  Craig Gotsman,et al.  Articulated Object Reconstruction and Markerless Motion Capture from Depth Video , 2008, Comput. Graph. Forum.

[4]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[5]  Nikos Paragios,et al.  Dense non-rigid surface registration using high-order graph matching , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  Hans-Peter Seidel,et al.  Efficient reconstruction of nonrigid shape and motion from real-time 3D scanner data , 2009, TOGS.

[7]  Amnon Shashua,et al.  Probabilistic graph and hypergraph matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Jitendra Malik,et al.  Shape matching and object recognition using low distortion correspondences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[9]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[10]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[11]  Szymon Rusinkiewicz,et al.  Global non-rigid alignment of 3-D scans , 2007, ACM Trans. Graph..

[12]  T. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, SIGGRAPH 2009.

[13]  Daniel Cohen-Or,et al.  4-points congruent sets for robust pairwise surface registration , 2008, ACM Trans. Graph..

[14]  Thomas A. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, ACM Trans. Graph..

[15]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[16]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[17]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[18]  Leonidas J. Guibas,et al.  Robust global registration , 2005, SGP '05.

[19]  Martial Hebert,et al.  A spectral technique for correspondence problems using pairwise constraints , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[20]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[21]  Phillip A. Regalia,et al.  The higher-order power method revisited: convergence proofs and effective initialization , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[22]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Jean Ponce,et al.  A Tensor-Based Algorithm for High-Order Graph Matching , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Matthias Zwicker,et al.  Global registration of dynamic range scans for articulated model reconstruction , 2011, TOGS.

[25]  Shimon Ullman,et al.  Recognizing solid objects by alignment with an image , 1990, International Journal of Computer Vision.

[26]  Matthias Zwicker,et al.  Range Scan Registration Using Reduced Deformable Models , 2009, Comput. Graph. Forum.

[27]  Yosi Keller,et al.  Efficient High Order Matching , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[29]  Laurent D. Cohen,et al.  Geodesic Methods in Computer Vision and Graphics , 2010, Found. Trends Comput. Graph. Vis..

[30]  Mario Vento,et al.  Thirty Years Of Graph Matching In Pattern Recognition , 2004, Int. J. Pattern Recognit. Artif. Intell..

[31]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[32]  Szymon Rusinkiewicz,et al.  Estimating the Laplace‐Beltrami Operator by Restricting 3D Functions , 2009, Comput. Graph. Forum.

[33]  Daniel Cremers,et al.  Large‐Scale Integer Linear Programming for Orientation Preserving 3D Shape Matching , 2011, Comput. Graph. Forum.

[34]  Sikun Li,et al.  Multiple Order Graph Matching , 2010, ACCV.

[35]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[36]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Hans-Peter Seidel,et al.  Intrinsic Shape Matching by Planned Landmark Sampling , 2011, Comput. Graph. Forum.

[38]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, ACM Trans. Graph..

[39]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[40]  Jianbo Shi,et al.  Balanced Graph Matching , 2006, NIPS.

[41]  H. Seidel,et al.  Isometric registration of ambiguous and partial data , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Hans-Peter Seidel,et al.  Isometric registration of ambiguous and partial data , 2009, CVPR.