Group convolutional codes

In this note we introduce the concept of group convolutional code in terms of skew polynomial rings. Then we use some theorems due to Jategaonkar that describe such rings in terms of matrices to characterize minimal $S_3$-convolutional codes over the field of five elements.

[1]  Philippe Piret,et al.  Convolutional Codes: An Algebraic Approach , 1988 .

[2]  Blas Torrecillas,et al.  Graded Codes , 2002, Applicable Algebra in Engineering, Communication and Computing.

[3]  Kees Roos On the structure of convolutional and cyclic convolutional codes , 1979, IEEE Trans. Inf. Theory.

[4]  Ivan Damgård Concatenated group codes and their exponents , 1987, IEEE Trans. Inf. Theory.

[5]  P. Piret,et al.  Structure and constructions of cyclic convolutional codes , 1976, IEEE Trans. Inf. Theory.

[6]  C. Curtis,et al.  Representation theory of finite groups and associated algebras , 1962 .

[7]  Heide Gluesing-Luerssen,et al.  On Cyclic Convolutional Codes , 2002 .

[8]  Karl-Heinz Zimmermann On generalizations of repeated-root cyclic codes , 1996, IEEE Trans. Inf. Theory.

[9]  S. Berman On the theory of group codes , 1967 .

[10]  Arun Vinayak Jategaonkar,et al.  Skew polynomial rings over semisimple rings , 1971 .

[11]  K. Zimmermann,et al.  Combinatorial S>n-Modules as Codes , 1995 .

[12]  Heide Gluesing-Luerssen,et al.  On the algebraic parameters of convolutional codes with cyclic structure , 2006 .

[13]  Heide Gluesing-Luerssen,et al.  Distance Bounds for Convolutional Codes and Some Optimal Codes , 2003 .

[14]  K. Zimmermann On the majority decodable distance of codes in filtrations of characteristicp>0 , 1993 .

[15]  G. David Forney,et al.  Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.

[16]  Thomas W. Hungerford,et al.  The Structure of Rings , 1974 .