Simultaneous pseudo-time stepping for 3D aerodynamic shape optimization

Abstract This paper presents a numerical method for aerodynamic shape optimization problems with state constraint. It uses a simultaneous semi-iterative technique to solve the equations arising from the first order necessary optimality conditions. Although there is no theoretical proof of convergence of this algorithm so far, in our numerical experiments the method converges without additional globalization in the design space. A reduced SQP method based preconditioner is used for convergence acceleration. Design examples of drag reduction with constant lift for wing and body of a Supersonic Commercial Transport (SCT) aircraft are included. The overall cost of computation is about 8 forward simulation runs.

[1]  S. Ta'asan PSEUDO-TIME METHODS FOR CONSTRAINED OPTIMIZATION PROBLEMS GOVERNED BY PDE , 1995 .

[2]  Frank Thiele,et al.  The MEGAFLOW project , 2000 .

[3]  Nicolas R. Gauger Aerodynamic Shape Optimization using the adjoint Euler Equations , 2001 .

[4]  Volker Schulz,et al.  Simultaneous Pseudo-Timestepping for Aerodynamic Shape Optimization Problems with State Constraints , 2006, SIAM J. Sci. Comput..

[5]  W. K. Anderson,et al.  Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation , 1997 .

[6]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part II: The Lagrange-Newton Solver and Its Application to Optimal Control of Steady Viscous Flows , 2005, SIAM J. Sci. Comput..

[7]  Joël Brezillon Application of the Adjoint Technique with the Optimization Framework Synaps Pointer Pro , 2005 .

[8]  Per Weinerfelt,et al.  Aerodynamic Shape Optimization and Parallel Computing Applied to Industrial Problems , 2001 .

[9]  Antony Jameson,et al.  Automatic Design of Transonic Airfoils to Reduce Reduce the Shock Induced Pressure Drag , 2007 .

[10]  Ekkehard W. Sachs,et al.  Block Preconditioners for KKT Systems in PDE—Governed Optimal Control Problems , 2001 .

[11]  Joel Brezillon,et al.  2D and 3D aerodynamic shape optimisation using the adjoint approach , 2004 .

[12]  Joel Brezillon,et al.  Aerodynamic shape optimization using simultaneous pseudo-timestepping , 2005 .

[13]  Matthias Heinkenschloss,et al.  Preconditioners for Karush-Kuhn-Tucker Matrices Arising in the Optimal Control of Distributed Systems , 1998 .

[14]  S. Obayashi,et al.  Aerodynamic Optimization of Supersonic Transport Wing Using Unstructured Adjoint Method , 2001 .

[15]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[16]  Niles A. Pierce,et al.  An Introduction to the Adjoint Approach to Design , 2000 .

[17]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[18]  Nicolas R. Gauger,et al.  Aerodynamic Shape Optimization using Adjoint Method , 2001 .

[19]  Nicolas R. Gauger Das Adjungiertenverfahren in der aerodynamischen Formoptimierung , 2002 .

[20]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[21]  A. Jameson Optimum aerodynamic design using CFD and control theory , 1995 .

[22]  Volker Schulz,et al.  Simultaneous Pseudo-Timestepping for PDE-Model Based Optimization Problems , 2004, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[23]  A. Jameson,et al.  Aerodynamic shape optimization of wing and wing-body configurations using control theory , 1995 .