Investigation of crustal motion in Europe by analysing the European VLBI sessions

Since 1990 the International VLBI Service for Geodesy and Astrometry (IVS) has been performing geodetic Very Long Baseline Interferometry (VLBI) observations within the European geodetic VLBI network. In this work, 114 European VLBI sessions from January 1990 to September 2011 are analysed using the Vienna VLBI Software (VieVS). A total of 58 baselines with lengths ranging from 59 m to 4581 km are investigated and the lengths of most of them indicate repeatabilities at the sub-centimetre level. The horizontal station motions which describe the motion of the Eurasian plate are compared to the NUVEL-1A and MORVEL tectonic plate models. Intraplate crustal motions are investigated by estimating the station velocities with respect to Wettzell (Germany), a station on the geodynamically stable part of Eurasia. The northern part of Europe is dominated by the postglacial isostatic rebound, confirmed by four VLBI sites in this region with an uplift from 2.89±0.71 mm/yr (Svetloe, Russia) to 7.23±1.00 mm/yr (Ny-Ålesund, Norway) with respect to the central part of the European plate. Besides the vertical uplift, these radio telescopes evidence a horizontal motion from the centre of the former ice sheet towards its border. In the southern part of Europe the motion of the VLBI sites is caused by the collision of the African plate with the Eurasian plate, while the stations on the stable part of Europe do not present any significant relative motions. Our results are compared against those by Haas et al. (J. Geodyn. 35:391–414, 2003) and with velocities of the current reference frame of the International Global Navigation Satellite Systems Service.

[1]  NASA Space Geodesy Program: GSFC data analysis, 1993. VLBI geodetic results 1979 - 1992 , 1994 .

[2]  Leonid Petrov,et al.  Study of the atmospheric pressure loading signal in very long baseline interferometry observations , 2003, physics/0311096.

[3]  D. C. Hill,et al.  Estimation of natural and anthropogenic contributions to twentieth century temperature change , 2002 .

[4]  T. Artz,et al.  VLBI terrestrial reference frame contributions to ITRF2008 , 2010 .

[5]  H. Schuh,et al.  First Results of European Crustal Motion Measurements with VLBI , 2013 .

[6]  Axel Nothnagel,et al.  Conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric VLBI , 2009 .

[7]  H. Schuh,et al.  Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium‐Range Weather Forecasts operational analysis data , 2006 .

[8]  Z. Altamimi,et al.  ITRF2008: an improved solution of the international terrestrial reference frame , 2011 .

[9]  Hermann Drewes,et al.  Geodetic Reference Frames , 2009 .

[10]  Pascal Willis,et al.  Earth on the Edge: Science for a Sustainable Planet: Proceedings of the IAG General Assembly, Melbourne, Australia, June 28 - July 2, 2011 , 2014 .

[11]  C. Bizouard,et al.  The Combined Solution C04 for Earth Orientation Parameters Consistent with International Terrestrial Reference Frame 2005 , 2009 .

[12]  J. Johansson,et al.  Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results , 2002 .

[13]  Harald Schuh,et al.  Atmospheric Effects on VLBI-Derived Terrestrial and Celestial Reference Frames , 2014 .

[14]  Richard G. Gordon,et al.  Current plate motions , 1990 .

[15]  Paul Johnston,et al.  Reply to comment by W. Fjeldskaar ‘What about the asthenosphere viscosity? Sea‐level change, glacial rebound and mantle viscosity for northern Europe’ , 2000 .

[16]  A. Kenyeres,et al.  Present crustal movement and strain distribution in Central Europe inferred from GPS measurements , 2000 .

[17]  J. Śledziński,et al.  Surface kinematics in the Alpine–Carpathian–Dinaric and Balkan region inferred from a new multi-network GPS combination solution , 2009 .

[18]  H. Scherneck A parametrized solid earth tide model and ocean tide loading effects for global geodetic baseline measurements , 1991 .

[19]  Christopher S. Jacobs,et al.  Astrometry and geodesy with radio interferometry: experiments, models, results , 1998 .

[20]  David E. Smith,et al.  Contributions of Space Geodesy to Geodynamics : Earth Dynamics , 1993 .

[21]  Harald Schuh,et al.  The New Vienna VLBI Software VieVS , 2012 .

[22]  Paul Johnston,et al.  Sea‐level change, glacial rebound and mantle viscosity fornorthern Europe , 1998 .

[23]  Steven N. Ward,et al.  Constraints On the Seismotectonics of the Central Mediterranean From Very Long Baseline Interferometry , 1994 .

[24]  Jan M. Johansson,et al.  Vertical crustal motion observed in the BIFROST project , 2003 .

[25]  A. Nothnagel,et al.  Intra-plate deformation in west-central Europe , 2010 .

[26]  A. Nothnagel,et al.  European VLBI for crustal dynamics , 2000 .

[27]  P. Sarti,et al.  Improved geodetic European very-long-baseline interferometry solution using models of antenna gravitational deformation , 2011 .

[28]  Robert W. Schunk,et al.  Utah State University Global Assimilation of Ionospheric Measurements Gauss‐Markov Kalman filter model of the ionosphere: Model description and validation , 2006 .

[29]  J. Johansson,et al.  Space-Geodetic Constraints on Glacial Isostatic Adjustment in Fennoscandia , 2001, Science.

[30]  Xavier Collilieux,et al.  IGS08: the IGS realization of ITRF2008 , 2012, GPS Solutions.

[31]  Axel Nothnagel,et al.  Recent crustal movements observed with the European VLBI network: geodetic analysis and results , 2003 .

[32]  G. Petit,et al.  IERS Conventions (2010) , 2010 .

[33]  O. Francis,et al.  Modelling the global ocean tides: modern insights from FES2004 , 2006 .

[34]  Richard G. Gordon,et al.  Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions , 1994 .

[35]  H. Schuha,et al.  VLBI: A fascinating technique for geodesy and astrometry , 2013 .

[36]  J. Johansson,et al.  BIFROST: Noise properties of GPS time series , 2007 .

[37]  Richard G. Gordon,et al.  Geologically current plate motions , 2010 .

[38]  A. Nothnagel,et al.  Large-scale strain-rates in Europe derived from observations in the European geodetic VLBI network , 2001 .

[39]  N. Panafidina,et al.  Length Variations of European Baselines Derived from VLBI and GPS Observations , 2001, 1102.0661.

[40]  A. Nothnagel,et al.  Crustal motion results derived from observations in the European geodetic VLBI network , 2000 .

[41]  E. F. Arias,et al.  THE SECOND REALIZATION OF THE INTERNATIONAL CELESTIAL REFERENCE FRAME BY VERY LONG BASELINE INTERFEROMETRY , 2015 .

[42]  Albert Ansmann,et al.  Air mass modification over Europe: EARLINET aerosol observations from Wales to Belarus , 2004 .

[43]  A. Kenyeres,et al.  Tectonic implications of the GPS velocity field in the northern Adriatic region , 2005 .

[44]  D. Gambis,et al.  Monitoring Earth orientation using space-geodetic techniques: state-of-the-art and prospective , 2004 .

[45]  Harald Schuh,et al.  Very Long Baseline Interferometry for Geodesy and Astrometry , 2013 .