A novel true random number generator based on a stochastic diffusive memristor

The intrinsic variability of switching behavior in memristors has been a major obstacle to their adoption as the next generation of universal memory. On the other hand, this natural stochasticity can be valuable for hardware security applications. Here we propose and demonstrate a novel true random number generator utilizing the stochastic delay time of threshold switching in a Ag:SiO2 diffusive memristor, which exhibits evident advantages in scalability, circuit complexity, and power consumption. The random bits generated by the diffusive memristor true random number generator pass all 15 NIST randomness tests without any post-processing, a first for memristive-switching true random number generators. Based on nanoparticle dynamic simulation and analytical estimates, we attribute the stochasticity in delay time to the probabilistic process by which Ag particles detach from a Ag reservoir. This work paves the way for memristors in hardware security applications for the era of the Internet of Things.Memristors can switch between high and low electrical-resistance states, but the switching behaviour can be unpredictable. Here, the authors harness this unpredictability to develop a memristor-based true random number generator that uses the stochastic delay time of threshold switching

[1]  Y. G. Velo,et al.  Total ionizing dose effect of γ-ray radiation on the switching characteristics and filament stability of HfOx resistive random access memory , 2014 .

[2]  Pim Tuyls,et al.  Hardware Intrinsic Security to Protect Value in the Mobile Market , 2014, ISSE.

[3]  Qingjiang Li,et al.  Coexistence of memory resistance and memory capacitance in TiO2 solid-state devices , 2014, Nanoscale Research Letters.

[4]  R. Williams,et al.  Sub-nanosecond switching of a tantalum oxide memristor , 2011, Nanotechnology.

[5]  Yuchao Yang,et al.  Building Neuromorphic Circuits with Memristive Devices , 2013, IEEE Circuits and Systems Magazine.

[6]  Evangelos Eleftheriou,et al.  Inherent stochasticity in phase-change memory devices , 2016, 2016 46th European Solid-State Device Research Conference (ESSDERC).

[7]  Deb Shankar Ray,et al.  Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  J. Yang,et al.  Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. , 2017, Nature materials.

[9]  Alessandro Calderoni,et al.  Physical Unbiased Generation of Random Numbers With Coupled Resistive Switching Devices , 2016, IEEE Transactions on Electron Devices.

[10]  J. Alvin Connelly,et al.  A noise-based IC random number generator for applications in cryptography , 2000 .

[11]  M. Kozicki,et al.  Electrochemical metallization memories—fundamentals, applications, prospects , 2011, Nanotechnology.

[12]  Peng Lin,et al.  Cross point arrays of 8 nm × 8 nm memristive devices fabricated with nanoimprint lithography , 2013 .

[13]  David Blaauw,et al.  16.3 A 23Mb/s 23pJ/b fully synthesized true-random-number generator in 28nm and 65nm CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[14]  Alessandro Trifiletti,et al.  A High-Speed Oscillator-Based Truly Random Number Source for Cryptographic Applications on a Smart Card IC , 2003, IEEE Trans. Computers.

[15]  David Blaauw,et al.  True Random Number Generator With a Metastability-Based Quality Control , 2007, IEEE Journal of Solid-State Circuits.

[16]  Shimeng Yu,et al.  Experimental Characterization of Physical Unclonable Function Based on 1 kb Resistive Random Access Memory Arrays , 2015, IEEE Electron Device Letters.

[17]  A. Bessonov,et al.  Layered memristive and memcapacitive switches for printable electronics. , 2015, Nature materials.

[18]  Z. Wei,et al.  True random number generator using current difference based on a fractional stochastic model in 40-nm embedded ReRAM , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[19]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[20]  R. Stanley Williams,et al.  Molecular dynamics simulations of oxide memristors: Crystal field effects , 2011, 1105.4445.

[21]  R Stanley Williams,et al.  Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices , 2012, Nanotechnology.

[22]  Dave Evans,et al.  How the Next Evolution of the Internet Is Changing Everything , 2011 .

[23]  R. Thewes,et al.  A low-power true random number generator using random telegraph noise of single oxide-traps , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[24]  Shimeng Yu,et al.  On the Switching Parameter Variation of Metal-Oxide RRAM—Part I: Physical Modeling and Simulation Methodology , 2012, IEEE Transactions on Electron Devices.

[25]  Qiangfei Xia,et al.  Nanoscale memristive radiofrequency switches , 2015, Nature Communications.

[26]  Sanu Mathew,et al.  2.4GHz 7mW all-digital PVT-variation tolerant True Random Number Generator in 45nm CMOS , 2010, 2010 Symposium on VLSI Circuits.

[27]  Terry Alford,et al.  Contact angle measurements for adhesion energy evaluation of silver and copper films on parylene-n and SiO2 substrates , 2003 .

[28]  R. Ohba,et al.  Si nanodevices for random number generating circuits for cryptographic security , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[29]  Rammile Ettelaie,et al.  Detachment force of particles from fluid droplets. , 2015, Soft matter.

[30]  Hiroshi Imamura,et al.  Spin dice: A scalable truly random number generator based on spintronics , 2014 .

[31]  Hyunsang Hwang,et al.  Monolithic integration of AgTe/TiO2 based threshold switching device with TiN liner for steep slope field-effect transistors , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[32]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[33]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[34]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[35]  Ya-Chin King,et al.  A Contact-Resistive Random-Access-Memory-Based True Random Number Generator , 2012, IEEE Electron Device Letters.

[36]  R. Ohba,et al.  Physical random number generator based on MOS structure after soft breakdown , 2004, IEEE Journal of Solid-State Circuits.

[37]  Warren Robinett,et al.  Memristor-CMOS hybrid integrated circuits for reconfigurable logic. , 2009, Nano letters.

[38]  L. Chua Memristor-The missing circuit element , 1971 .

[39]  Jiantao Zhou,et al.  Stochastic Memristive Devices for Computing and Neuromorphic Applications , 2013, Nanoscale.

[40]  An Chen,et al.  Utilizing the Variability of Resistive Random Access Memory to Implement Reconfigurable Physical Unclonable Functions , 2015, IEEE Electron Device Letters.

[41]  H. Ahn,et al.  Realization of vertical resistive memory (VRRAM) using cost effective 3D process , 2011, 2011 International Electron Devices Meeting.

[42]  Kate J. Norris,et al.  Anatomy of Ag/Hafnia‐Based Selectors with 1010 Nonlinearity , 2017, Advanced materials.

[43]  Stefano Ambrogio,et al.  True Random Number Generation by Variability of Resistive Switching in Oxide-Based Devices , 2015, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.