A Novel Aluminum–Graphite Dual‐Ion Battery

[1]  Miaofang Chi,et al.  Solid Electrolyte: the Key for High‐Voltage Lithium Batteries , 2015 .

[2]  J. Cabana,et al.  Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions , 2010, Advanced materials.

[3]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[4]  J. Read In-Situ Studies on the Electrochemical Intercalation of Hexafluorophosphate Anion in Graphite with Selective Cointercalation of Solvent , 2015 .

[5]  M. Yoshio,et al.  Solvation effect on intercalation behaviour of tetrafluoroborate into graphite electrode , 2015 .

[6]  Chaojiang Niu,et al.  Manganese oxide/carbon yolk-shell nanorod anodes for high capacity lithium batteries. , 2015, Nano letters.

[7]  T. Ishihara,et al.  Novel graphite/TiO2 electrochemical cells as a safe electric energy storage system , 2010 .

[8]  T. Sutto,et al.  X-ray diffraction studies of electrochemical graphite intercalation compounds of ionic liquids , 2009 .

[9]  J. Whitacre,et al.  Reversible Intercalation of Fluoride-Anion Receptor Complexes in Graphite , 2007 .

[10]  J. Dahn,et al.  Electrochemical Intercalation of PF 6 into Graphite , 2000 .

[11]  Yongsheng Chen,et al.  A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density , 2013 .

[12]  Kang Xu,et al.  Dual-graphite chemistry enabled by a high voltage electrolyte , 2014 .

[13]  Yun-Sung Lee,et al.  Research Progress on Negative Electrodes for Practical Li‐Ion Batteries: Beyond Carbonaceous Anodes , 2015 .

[14]  I. Snook,et al.  Anion secondary batteries utilizing a reversible BF4 insertion/extraction two-dimensional Si material , 2014 .

[15]  M. Winter,et al.  Investigation of PF6(-) and TFSI(-) anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[16]  Yair Ein-Eli,et al.  Higher, Stronger, Better…︁ A Review of 5 Volt Cathode Materials for Advanced Lithium‐Ion Batteries , 2012 .

[17]  I-Wei Chen,et al.  Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage , 2015, Science.

[18]  Stephen J. Harris,et al.  Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents , 2009 .

[19]  M. Yoshio,et al.  Development of a novel and safer energy storage system using a graphite cathode and Nb2O5 anode , 2013 .

[20]  M. Winter,et al.  Influence of Graphite Characteristics on the Electrochemical Intercalation of Bis(trifluoromethanesulfonyl) imide Anions into a Graphite-Based Cathode , 2013 .

[21]  M. Winter,et al.  Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte , 2014 .

[22]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[23]  M. Yoshio,et al.  Hexafluorophosphate intercalation into graphite electrode from gamma-butyrolactone solutions in activated carbon/graphite capacitors , 2015 .

[24]  M. Noel,et al.  Electrochemistry of graphite intercalation compounds , 1998 .

[25]  Irene M. Plitz,et al.  A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications , 2003 .

[26]  P. Ajayan,et al.  Design Considerations for Unconventional Electrochemical Energy Storage Architectures , 2015 .

[27]  P. Trulove,et al.  Dual Intercalating Molten Electrolyte Batteries , 1994 .

[28]  Seung-Don Choi,et al.  The Current Move of Lithium Ion Batteries Towards the Next Phase , 2012 .

[29]  Ji Hun Park,et al.  Al-C hybrid nanoclustered anodes for lithium ion batteries with high electrical capacity and cyclic stability. , 2014, Chemical communications.

[30]  F. Beck,et al.  Graphite intercalation compounds as positive electrodes in galvanic cells , 1981 .

[31]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[32]  F. J. Martino,et al.  Performance Characteristics of Solid Lithium‐Aluminum Alloy Electrodes , 1976 .

[33]  M. Yoshio,et al.  Suppression of PF6- intercalation into graphite by small amounts of ethylene carbonate in activated carbon/graphite capacitors. , 2010, Chemical communications.

[34]  T. Ishihara,et al.  Intercalation of PF6− anion into graphitic carbon with nano pore for dual carbon cell with high capacity , 2010 .

[35]  Bing-Joe Hwang,et al.  An ultrafast rechargeable aluminium-ion battery , 2015, Nature.

[36]  Robert A. Huggins,et al.  Thermodynamic and Mass Transport Properties of “ LiAl ” , 1979 .

[37]  M. Winter,et al.  Dual-Ion Cells based on the Electrochemical Intercalation of Asymmetric Fluorosulfonyl-(trifluoromethanesulfonyl) imide Anions into Graphite , 2014 .

[38]  Jun Chen,et al.  LiNi(0.5)Mn(1.5)O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. , 2013, Nano letters.