The applications of model-based geostatistics in helminth epidemiology and control.

Funding agencies are dedicating substantial resources to tackle helminth infections. Reliable maps of the distribution of helminth infection can assist these efforts by targeting control resources to areas of greatest need. The ability to define the distribution of infection at regional, national and subnational levels has been enhanced greatly by the increased availability of good quality survey data and the use of model-based geostatistics (MBG), enabling spatial prediction in unsampled locations. A major advantage of MBG risk mapping approaches is that they provide a flexible statistical platform for handling and representing different sources of uncertainty, providing plausible and robust information on the spatial distribution of infections to inform the design and implementation of control programmes. Focussing on schistosomiasis and soil-transmitted helminthiasis, with additional examples for lymphatic filariasis and onchocerciasis, we review the progress made to date with the application of MBG tools in large-scale, real-world control programmes and propose a general framework for their application to inform integrative spatial planning of helminth disease control programmes.

[1]  A. Tatem,et al.  The accuracy of human population maps for public health application , 2005, Tropical medicine & international health : TM & IH.

[2]  Julian Stander,et al.  Contrasting patterns in the small-scale heterogeneity of human helminth infections in urban and rural environments in Brazil. , 2006, International journal for parasitology.

[3]  María-Gloria Basáñez,et al.  Human infection patterns and heterogeneous exposure in river blindness. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  S. Brooker,et al.  Mapping soil-transmitted helminths in Southeast Asia and implications for parasite control. , 2003, The Southeast Asian journal of tropical medicine and public health.

[5]  N. Cressie The origins of kriging , 1990 .

[6]  Annette Olsen,et al.  Efficacy and safety of drug combinations in the treatment of schistosomiasis, soil-transmitted helminthiasis, lymphatic filariasis and onchocerciasis. , 2007, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[7]  Simon Brooker,et al.  Spatial heterogeneity of parasite co-infection: Determinants and geostatistical prediction at regional scales , 2009, International journal for parasitology.

[8]  I Kleinschmidt,et al.  Spatial patterns of infant mortality in Mali: the effect of malaria endemicity. , 2004, American journal of epidemiology.

[9]  María-Gloria Basáñez,et al.  River Blindness: A Success Story under Threat? , 2006, PLoS medicine.

[10]  P Vounatsou,et al.  Bayesian geostatistical modelling for mapping schistosomiasis transmission , 2009, Parasitology.

[11]  Boakye A Boatin,et al.  Control of onchocerciasis. , 2006, Advances in parasitology.

[12]  T. Robinson,et al.  Spatial statistics and geographical information systems in epidemiology and public health. , 2000, Advances in parasitology.

[13]  M Tanner,et al.  Relative contribution of day-to-day and intra-specimen variation in faecal egg counts of Schistosoma mansoni before and after treatment with praziquantel , 2001, Parasitology.

[14]  Hugh J. W. Sturrock,et al.  Integrated Mapping of Neglected Tropical Diseases: Epidemiological Findings and Control Implications for Northern Bahr-el-Ghazal State, Southern Sudan , 2009, PLoS neglected tropical diseases.

[15]  S. Brooker,et al.  Estimating the number of helminthic infections in the Republic of Cameroon from data on infection prevalence in schoolchildren. , 2000, Bulletin of the World Health Organization.

[16]  Archie C A Clements,et al.  Age and gender effects in self‐reported urinary schistosomiasis in Tanzania , 2008, Tropical medicine & international health : TM & IH.

[17]  L Gosoniu,et al.  Bayesian modelling of geostatistical malaria risk data. , 2006, Geospatial health.

[18]  E. Michael,et al.  Global mapping of lymphatic filariasis. , 1997, Parasitology today.

[19]  Archie C A Clements,et al.  Use of Bayesian geostatistical prediction to estimate local variations in Schistosoma haematobium infection in western Africa. , 2009, Bulletin of the World Health Organization.

[20]  A. Fulford,et al.  The development of an age structured model for schistosomiasis transmission dynamics and control and its validation for Schistosoma mansoni , 1995, Epidemiology and Infection.

[21]  P J Diggle,et al.  Spatial modelling and the prediction of Loa loa risk: decision making under uncertainty , 2007, Annals of tropical medicine and parasitology.

[22]  Clive Osmond,et al.  Effect of administration of intestinal anthelmintic drugs on haemoglobin: systematic review of randomised controlled trials , 2007, BMJ : British Medical Journal.

[23]  Archie C A Clements,et al.  Spatial co‐distribution of neglected tropical diseases in the East African Great Lakes region: revisiting the justification for integrated control , 2010, Tropical medicine & international health : TM & IH.

[24]  D. Engels,et al.  Comparison of the direct faecal smear and two thick smear techniques for the diagnosis of intestinal parasitic infections. , 1996, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[25]  Penelope Vounatsou,et al.  Spatial risk profiling of Plasmodium falciparum parasitaemia in a high endemicity area in Côte d'Ivoire , 2009, Malaria Journal.

[26]  S I Hay,et al.  Determining global population distribution: methods, applications and data. , 2006, Advances in parasitology.

[27]  Gary J. Hunter,et al.  Responding to the consequences of uncertainty in geographical data , 2002, Int. J. Geogr. Inf. Sci..

[28]  D. J. Brus,et al.  Random sampling or geostatistical modelling? Choosing between design-based and model-based sampling strategies for soil (with discussion) , 1997 .

[29]  M. Tanner,et al.  Spatial risk prediction and mapping of Schistosoma mansoni infections among schoolchildren living in western Côte d'Ivoire , 2005, Parasitology.

[30]  P Garner,et al.  Deworming drugs for treating soil-transmitted intestinal worms in children: effects on growth and school performance. , 2007, The Cochrane database of systematic reviews.

[31]  Valérie Obsomer,et al.  Mapping the distribution of Loa loa in Cameroon in support of the African Programme for Onchocerciasis Control , 2004, Filaria journal.

[32]  P J Hotez,et al.  Mass Drug Administration and Integrated Control for the World's High‐Prevalence Neglected Tropical Diseases , 2009, Clinical pharmacology and therapeutics.

[33]  Penelope Vounatsou,et al.  Bayesian Spatio-Temporal Modeling of Schistosoma japonicum Prevalence Data in the Absence of a Diagnostic ‘Gold’ Standard , 2008, PLoS neglected tropical diseases.

[34]  Alan Fenwick,et al.  Recent progress in integrated neglected tropical disease control. , 2007, Trends in parasitology.

[35]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[36]  P. Diggle,et al.  Childhood malaria in the Gambia: a case-study in model-based geostatistics. , 2002 .

[37]  Ingolf Kühn,et al.  Incorporating spatial autocorrelation may invert observed patterns , 2006 .

[38]  P. J. Hooper,et al.  The Global Programme to Eliminate Lymphatic Filariasis: health impact during its first 8 years (2000–2007) , 2009, Annals of tropical medicine and parasitology.

[39]  Innocent Takougang,et al.  Rapid assessment method for prevalence and intensity of Loa loa infection. , 2002, Bulletin of the World Health Organization.

[40]  Andrew J Tatem,et al.  The co-distribution of Plasmodium falciparum and hookworm among African schoolchildren , 2006, Malaria Journal.

[41]  L Matthews,et al.  The distribution of the pathogenic nematode Nematodirus battus in lambs is zero-inflated , 2008, Parasitology.

[42]  Jürg Utzinger,et al.  Integrated disease mapping in a polyparasitic world. , 2007, Geospatial health.

[43]  S. Brooker,et al.  The potential of geographical information systems and remote sensing in the epidemiology and control of human helminth infections. , 2000, Advances in parasitology.

[44]  E S Alley,et al.  The impact of Mectizan on the transmission of onchocerciasis. , 1998, Annals of tropical medicine and parasitology.

[45]  E. Michael,et al.  A geostatistical analysis of the geographic distribution of lymphatic filariasis prevalence in southern India. , 2002, The American journal of tropical medicine and hygiene.

[46]  R Moyeed,et al.  Spatial modelling of individual-level parasite counts using the negative binomial distribution. , 2000, Biostatistics.

[47]  D. Brus,et al.  Design‐based versus model‐based estimates of spatial means: Theory and application in environmental soil science , 1993 .

[48]  Alan Fenwick,et al.  Mapping the Probability of Schistosomiasis and Associated Uncertainty, West Africa , 2008, Emerging infectious diseases.

[49]  Eberhard Parlow,et al.  Bayesian spatial risk prediction of Schistosoma mansoni infection in western Côte d'Ivoire using a remotely-sensed digital elevation model. , 2007, The American journal of tropical medicine and hygiene.

[50]  Simon I. Hay,et al.  Quantifying Aggregated Uncertainty in Plasmodium falciparum Malaria Prevalence and Populations at Risk via Efficient Space-Time Geostatistical Joint Simulation , 2010, PLoS Comput. Biol..

[51]  Caroline W. Kabaria,et al.  Human population, urban settlement patterns and their impact on Plasmodium falciparum malaria endemicity , 2008, Malaria Journal.

[52]  S. Brooker,et al.  Global epidemiology, ecology and control of soil-transmitted helminth infections. , 2006, Advances in parasitology.

[53]  Marcel Tanner,et al.  Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. , 2006, The Lancet. Infectious diseases.

[54]  Dirk Engels,et al.  Soil-transmitted helminth infections: updating the global picture. , 2003, Trends in parasitology.

[55]  S. Brooker,et al.  Bayesian spatial analysis and disease mapping: tools to enhance planning and implementation of a schistosomiasis control programme in Tanzania , 2006, Tropical medicine & international health : TM & IH.

[56]  S. Brooker,et al.  Rapid mapping of schistosomiasis and other neglected tropical diseases in the context of integrated control programmes in Africa , 2009, Parasitology.

[57]  Alan Fenwick,et al.  A Comparative Study of the Spatial Distribution of Schistosomiasis in Mali in 1984–1989 and 2004–2006 , 2009, PLoS neglected tropical diseases.

[58]  P. Enyong,et al.  Rapid epidemiological mapping of onchocerciasis (REMO): its application by the African Programme for Onchocerciasis Control (APOC) , 2002, Annals of tropical medicine and parasitology.

[59]  Penelope Vounatsou,et al.  Spatially-explicit risk profiling of Plasmodium falciparum infections at a small scale: a geostatistical modelling approach , 2008, Malaria Journal.

[60]  S. Brooker,et al.  Bayesian spatial analysis of a national urinary schistosomiasis questionnaire to assist geographic targeting of schistosomiasis control in Tanzania, East Africa , 2008, International journal for parasitology.

[61]  J A N Filipe,et al.  Microfilarial distribution of Loa loa in the human host: population dynamics and epidemiological implications , 2006, Parasitology.

[62]  Simon Brooker,et al.  Human Helminth Co-Infection: Analysis of Spatial Patterns and Risk Factors in a Brazilian Community , 2008, PLoS neglected tropical diseases.

[63]  Simon I Hay,et al.  Spatial prediction of Plasmodium falciparum prevalence in Somalia , 2008, Malaria Journal.

[64]  H. Wackernagle,et al.  Multivariate geostatistics: an introduction with applications , 1998 .

[65]  J. Utzinger,et al.  Efficacy of current drugs against soil-transmitted helminth infections: systematic review and meta-analysis. , 2008, JAMA.

[66]  J. Gyapong,et al.  The use of grid sampling methodology for rapid assessment of the distribution of bancroftian filariasis. , 2001, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[67]  Immo Kleinschmidt,et al.  Developing a spatial-statistical model and map of historical malaria prevalence in Botswana using a staged variable selection procedure , 2007, International journal of health geographics.

[68]  S. Brooker,et al.  Spatial analysis of the distribution of intestinal nematode infections in Uganda , 2004, Epidemiology and Infection.

[69]  R Moyeed,et al.  Bayesian geostatistical prediction of the intensity of infection with Schistosoma mansoni in East Africa , 2006, Parasitology.

[70]  I Kleinschmidt,et al.  The use of spatial analysis in mapping the distribution of bancroftian filariasis in four West African countries , 2002, Annals of tropical medicine and parasitology.

[71]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[72]  L. Kazembe,et al.  Spatial analysis and mapping of malaria risk in Malawi using point-referenced prevalence of infection data , 2006, International journal of health geographics.

[73]  Giovanna Raso,et al.  Spatial Distribution of Human Schistosoma japonicum Infections in the Dongting Lake Region, China , 2009, PloS one.

[74]  M. Tanner,et al.  An integrated approach for risk profiling and spatial prediction of Schistosoma mansoni-hookworm coinfection. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Armin Gemperli,et al.  Mapping malaria transmission in West and Central Africa , 2006, Tropical medicine & international health : TM & IH.

[76]  J. Richter,et al.  The impact of chemotherapy on morbidity due to schistosomiasis. , 2003, Acta tropica.

[77]  P Vounatsou,et al.  The influence of sampling effort and the performance of the Kato-Katz technique in diagnosing Schistosoma mansoni and hookworm co-infections in rural Côte d'Ivoire , 2003, Parasitology.

[78]  Thomas A. Smith,et al.  Mapping malaria risk in West Africa using a Bayesian nonparametric non-stationary model , 2009, Comput. Stat. Data Anal..

[79]  P Vounatsou,et al.  Malaria mapping using transmission models: application to survey data from Mali. , 2006, American journal of epidemiology.

[80]  Peter J. Diggle,et al.  Bayesian Geostatistical Design , 2006 .

[81]  M S Chan,et al.  The development and validation of an age-structured model for the evaluation of disease control strategies for intestinal helminths , 1994, Parasitology.

[82]  Neal Alexander,et al.  Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology , 2011 .

[83]  Penelope Vounatsou,et al.  Risk factors and spatial patterns of hookworm infection among schoolchildren in a rural area of western Côte d'Ivoire. , 2006, International journal for parasitology.

[84]  S. Brooker,et al.  Schistosomes, snails and satellites. , 2002, Acta tropica.

[85]  Mark Myatt,et al.  Rapid assessment of Schistosoma mansoni: the validity, applicability and cost‐effectiveness of the Lot Quality Assurance Sampling method in Uganda , 2005, Tropical medicine & international health : TM & IH.

[86]  A. Tatem,et al.  Global environmental data for mapping infectious disease distribution. , 2006, Advances in parasitology.

[87]  C. SIMOONGAa,et al.  Remote sensing, geographical information system and spatial analysis for schistosomiasis epidemiology and ecology in Africa , 2009 .

[88]  Leda Hernandez,et al.  Prevalence survey of schistosomiasis in Mindanao and the Visayas, The Philippines. , 2008, Parasitology international.

[89]  S. Brooker,et al.  Towards an atlas of human helminth infection in sub-Saharan Africa: the use of geographical information systems (GIS). , 2000, Parasitology today.

[90]  Anand P. Patil,et al.  The risks of malariainfection in Kenya in 2009 , 2009, BMC infectious diseases.

[91]  Ciprian M. Crainiceanu,et al.  2 Bayesian Analysis for Penalized Spline Regression Using WinBUGS particular cases of Generalized Linear Mixed Models ( GLMMs , 2005 .

[92]  David H. Molyneux,et al.  Filaria control and elimination: diagnostic, monitoring and surveillance needs. , 2009, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[93]  K. Ramaiah,et al.  Epifil: a dynamic model of infection and disease in lymphatic filariasis. , 1998, The American journal of tropical medicine and hygiene.

[94]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[95]  S. Hay,et al.  Using NOAA-AVHRR data to model human helminth distributions in planning disease control in Cameroon, West Africa , 2002 .

[96]  S. Brooker Spatial epidemiology of human schistosomiasis in Africa: risk models, transmission dynamics and control , 2007, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[97]  M S Chan,et al.  Dynamic models of schistosomiasis morbidity. , 1996, The American journal of tropical medicine and hygiene.

[98]  Peter J Diggle,et al.  Short communication: Negative spatial association between lymphatic filariasis and malaria in West Africa , 2006, Tropical medicine & international health : TM & IH.

[99]  B. Mallick,et al.  Analyzing Nonstationary Spatial Data Using Piecewise Gaussian Processes , 2005 .

[100]  Armin Gemperli,et al.  Development of spatial statistical methods for modelling point-referenced spatial data in malaria epidemiology , 2003 .

[101]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[102]  H. Carabin,et al.  Estimating the sensitivity and specificity of Kato-Katz stool examination technique for detection of hookworms, Ascaris lumbricoides and Trichuris trichiura infections in humans in the absence of a 'gold standard'. , 2010, International journal for parasitology.

[103]  Marcel Tanner,et al.  Questionnaires for rapid screening of schistosomiasis in sub-Saharan Africa. , 2002, Bulletin of the World Health Organization.

[104]  C. Dormann Effects of incorporating spatial autocorrelation into the analysis of species distribution data , 2007 .

[105]  David L. Smith,et al.  A World Malaria Map: Plasmodium falciparum Endemicity in 2007 , 2009, PLoS medicine.

[106]  Y. Zhang,et al.  The Schistosomiasis Control Initiative (SCI): rationale, development and implementation from 2002–2008 , 2009, Parasitology.