Reconstruction and deconstruction of human somitogenesis in vitro

[1]  Fabian J. Theis,et al.  CellRank for directed single-cell fate mapping , 2020, Nature Methods.

[2]  O. Pourquié,et al.  Paraxial mesoderm organoids model development of human somites , 2021, bioRxiv.

[3]  Alexander P Nesmith,et al.  Prednisolone rescues Duchenne muscular dystrophy phenotypes in human pluripotent stem cell–derived skeletal muscle in vitro , 2021, Proceedings of the National Academy of Sciences.

[4]  William Thielicke,et al.  Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab , 2021, Journal of Open Research Software.

[5]  A. van Oudenaarden,et al.  An in vitro model of early anteroposterior organization during human development , 2020, Nature.

[6]  M. Estermann Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites , 2020 .

[7]  Long Guo,et al.  Recapitulating the human segmentation clock with pluripotent stem cells , 2020, Nature.

[8]  A. Meissner,et al.  Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites , 2020, Science.

[9]  A. van Oudenaarden,et al.  Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids , 2020, Nature.

[10]  J. Touboul,et al.  In vitro characterization of the human segmentation clock , 2020, Nature.

[11]  Kerstin B. Meyer,et al.  BBKNN: fast batch alignment of single cell transcriptomes , 2019, Bioinform..

[12]  Fabian J Theis,et al.  Generalizing RNA velocity to transient cell states through dynamical modeling , 2019, Nature Biotechnology.

[13]  Fred A. Hamprecht,et al.  ilastik: interactive machine learning for (bio)image analysis , 2019, Nature Methods.

[14]  R. Stewart,et al.  An In Vitro Human Segmentation Clock Model Derived from Embryonic Stem Cells , 2019, Cell reports.

[15]  Jonathan Touboul,et al.  In vitro characterization of the human segmentation clock , 2018, bioRxiv.

[16]  Leonardo Beccari,et al.  Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids , 2018, Nature.

[17]  Johannes Stegmaier,et al.  Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust , 2018, Development.

[18]  R. Kageyama,et al.  ES cell-derived presomitic mesoderm-like tissues for analysis of synchronized oscillations in the segmentation clock , 2018, Development.

[19]  O. Pourquié,et al.  Recapitulating early development of mouse musculoskeletal precursors of the paraxial mesoderm in vitro , 2017, Development.

[20]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[21]  Valerie Wilson,et al.  A Gene Regulatory Network Balances Neural and Mesoderm Specification during Vertebrate Trunk Development , 2017, Developmental cell.

[22]  S. Grill,et al.  Cortical flow aligns actin filaments to form a furrow , 2016, eLife.

[23]  Timothy K Lee,et al.  High-resolution imaging and computational analysis of haematopoietic cell dynamics in vivo , 2016, Nature Communications.

[24]  K. Woltjen,et al.  Engineering the AAVS1 locus for consistent and scalable transgene expression in human iPSCs and their differentiated derivatives. , 2016, Methods.

[25]  Olivier Tassy,et al.  Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy , 2015, Nature Biotechnology.

[26]  C. Kimmel,et al.  Building the backbone: the development and evolution of vertebral patterning , 2015, Development.

[27]  Feng Zhang,et al.  Genome engineering using CRISPR-Cas9 system. , 2015, Methods in molecular biology.

[28]  Alexis Hubaud,et al.  Signalling dynamics in vertebrate segmentation , 2014, Nature Reviews Molecular Cell Biology.

[29]  William Thielicke,et al.  PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB , 2014 .

[30]  Y. Saga The mechanism of somite formation in mice. , 2012, Current opinion in genetics & development.

[31]  Luis G. Morelli,et al.  Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock , 2012, Development.

[32]  R. Kageyama,et al.  Different types of oscillations in Notch and Fgf signaling regulate the spatiotemporal periodicity of somitogenesis. , 2011, Genes & development.

[33]  M. Buckingham,et al.  The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. , 2007, Annual review of cell and developmental biology.

[34]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[35]  Yumiko Saga,et al.  The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity , 2005, Nature.

[36]  J. Wakefield,et al.  Ubiquitous GFP expression in transgenic chickens using a lentiviral vector , 2005, Development.

[37]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[38]  R. Keynes,et al.  Somite polarity and segmental patterning of the peripheral nervous system , 2004, Mechanisms of Development.

[39]  L. Preziosi,et al.  Modeling the early stages of vascular network assembly , 2003, The EMBO journal.

[40]  Y. Bessho,et al.  Dynamic expression and essential functions of Hes7 in somite segmentation. , 2001, Genes & development.

[41]  Haruhiko Koseki,et al.  Mesp2 initiates somite segmentation through the Notch signalling pathway , 2000, Nature Genetics.

[42]  M. Taketo,et al.  Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. , 1997, Genes & development.

[43]  R. Keynes,et al.  Segmentation in the vertebrate nervous system , 1984, Nature.

[44]  Viktor Hamburger,et al.  A series of normal stages in the development of the chick embryo , 1992, Journal of morphology.

[45]  G. T. Walker The Flapping Flight of Birds , 1925, The Journal of the Royal Aeronautical Society.