Synchronization of Rossler chaotic system for secure communication via descriptor observer design approach

An observer construction method for semilinear descriptor systems of the form Eẋ = Ax + f, where E (singular), A are linear operators and f is a nonlinear function, is studied. Using a new approach, based on matrix theory, it is shown that an observer may be designed under certain conditions on system operators if one linear matrix inequality (LMI) is satisfied. By treating the transmitted signal as an extra state, chaotic Rössler system is rewritten in the semilinear descriptor system form and then using proposed observer the transmitted signal is retrieved. Numerical simulations are presented to demonstrate the effectiveness of the proposed approach.

[1]  S. Bhaumik,et al.  On observability of irregular descriptor systems , 2014 .

[2]  Jinhu Lu,et al.  Synchronization of an uncertain unified chaotic system via adaptive control , 2002 .

[3]  César Cruz-Hernández,et al.  Output Synchronization of Chaotic Systems: Model-Matching Approach with Application to Secure Communication , 2005 .

[4]  J. Suykens,et al.  Robust nonlinear H/sub /spl infin// synchronization of chaotic Lur'e systems , 1997 .

[5]  K. Sudheer,et al.  Adaptive modified function projective synchronization of multiple time-delayed chaotic Rossler system , 2011 .

[6]  S. Bhaumik,et al.  Observer Design for Descriptor Systems with Lipschitz Nonlinearities : an LMI Approach , 2014 .

[7]  Shovan Bhaumik,et al.  Full- and reduced-order observer design for rectangular descriptor systems with unknown inputs , 2015, J. Frankl. Inst..

[8]  Teh-Lu Liao,et al.  Adaptive control and synchronization of Lorenz systems , 1999 .

[9]  Mao-Yin Chen,et al.  Unknown input observer based chaotic secure communication , 2008 .

[10]  Sugawara,et al.  Observation of synchronization in laser chaos. , 1994, Physical review letters.

[11]  S. Ge,et al.  Adaptive synchronization of uncertain chaotic systems via backstepping design , 2001 .

[12]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[13]  Changchun Hua,et al.  A new chaotic secure communication scheme , 2005 .

[14]  Faqiang Wang,et al.  Synchronization of unified chaotic system based on passive control , 2007 .

[15]  F. M. Kakmeni,et al.  A new adaptive observer-based synchronization scheme for private communication , 2006 .

[16]  Teh-Lu Liao,et al.  An observer-based approach for chaotic synchronization with applications to secure communications , 1999 .

[17]  Chuandong Li,et al.  Lag synchronization of hyperchaos with application to secure communications , 2005 .

[18]  Morgül,et al.  Observer based synchronization of chaotic systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Yang Tao,et al.  Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication , 1997 .

[20]  O. Rössler An equation for continuous chaos , 1976 .

[21]  Guanrong Chen,et al.  A simple global synchronization criterion for coupled chaotic systems , 2003 .

[22]  Johan A. K. Suykens,et al.  Robust Nonlinear H Synchronization of Chaotic Lur'e Systems , 1997 .

[23]  Jose Alvarez-Ramirez,et al.  More secure communication using chained chaotic oscillators , 2001 .

[24]  Shou-Wei Gao,et al.  Singular observer approach for chaotic synchronization and private communication , 2011 .

[25]  Zhengzhi Han,et al.  Controlling and synchronizing chaotic Genesio system via nonlinear feedback control , 2003 .

[26]  Wei Zhang,et al.  Chaotic synchronization and secure communication based on descriptor observer , 2009 .

[27]  Jun-an Lu,et al.  Synchronization of a unified chaotic system and the application in secure communication , 2002 .

[28]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[29]  Changchun Hua,et al.  Synchronization of chaotic systems based on PI observer design , 2005 .

[30]  Wei Zhang,et al.  Finite-time chaos control via nonsingular terminal sliding mode control , 2009 .

[31]  S. Bhaumik,et al.  On detectability and observer design for rectangular linear descriptor systems , 2016 .