Supervised training algorithms for B-Spline neural networks and neuro-fuzzy systems
暂无分享,去创建一个
László T. Kóczy | António E. Ruano | Cristiano Cabrita | J. V. Oliveira | L. Kóczy | A. Ruano | C. Cabrita | J. V. Oliveira
[1] Xin Yao,et al. Evolving artificial neural networks , 1999, Proc. IEEE.
[2] Marcelo Simoes. Introduction to Fuzzy Control , 2003 .
[3] Jun Zhou,et al. Comparison of learning strategies for adaptation of fuzzy controller parameters , 1999, Fuzzy Sets Syst..
[4] László T. Kóczy,et al. Approximate reasoning by linear rule interpolation and general approximation , 1993, Int. J. Approx. Reason..
[5] Erik Weyer,et al. The ASMOD algorithm Some new theoretical and experimental results , 1995 .
[6] Christopher J. Harris,et al. A neurofuzzy network structure for modelling and state estimation of unknown nonlinear systems , 1997, Int. J. Syst. Sci..
[7] László T. Kóczy,et al. Fuzzy systems and approximation , 1997, Fuzzy Sets Syst..
[8] László T. Kóczy,et al. Interpolation in Hierarchical Rule Bases , 2003 .
[9] Philip E. Gill,et al. Practical optimization , 1981 .
[10] Christopher J. Harris,et al. Linearization and state estimation of unknown discrete-time nonlinear dynamic systems using recurrent neurofuzzy networks , 1999, IEEE Trans. Syst. Man Cybern. Part B.
[11] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[12] J. Freidman,et al. Multivariate adaptive regression splines , 1991 .
[13] Lotfi A. Zadeh,et al. Fuzzy Sets , 1996, Inf. Control..
[14] C. J. Harris,et al. Neurofuzzy identification of an autonomous underwater vehicle , 1999, Int. J. Syst. Sci..
[15] Peter J. Fleming,et al. A new formulation of the learning problem of a neural network controller , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.
[16] Tom Kavli,et al. THE EQUIVALENCE OF SPLINE MODELS AND FUZZY LOGIC APPLIED TO MODEL CONSTRUCTION AND INTERPRETATION , 1996 .
[17] Lotfi A. Zadeh,et al. Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..
[18] James L. McClelland,et al. Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .
[19] T. Kavli. ASMO—Dan algorithm for adaptive spline modelling of observation data , 1993 .
[20] António E. Ruano,et al. Exploiting the separability of linear and nonlinear parameters in radial basis function networks , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).
[21] Kenneth Levenberg. A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .
[22] Ebrahim H. Mamdani,et al. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..
[23] P. Werbos,et al. Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .
[24] John Moody,et al. Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.
[25] László T. Kóczy,et al. Improvement of the Cluster Searching Algorithm in Sugeno and Yasukawa's Qualitative Modeling Approach , 2001, Fuzzy Days.
[26] Christopher J. Harris,et al. Fuzzy local linearization and local basis function expansion in nonlinear system modeling , 1999, IEEE Trans. Syst. Man Cybern. Part B.