Convergent iterative schemes for time parallelization
暂无分享,去创建一个
Izaskun Garrido Hernandez | Barry Lee | Gunnar Fladmark | Magne Espedal | Barry Lee | M. Espedal | I. G. Hernandez | G. Fladmark
[1] Magne S. Espedal,et al. Numerical Simulation of Compositional Fluid Flow in Porous Media , 2000 .
[2] P. Wesseling. An Introduction to Multigrid Methods , 1992 .
[3] J. Lions,et al. Résolution d'EDP par un schéma en temps « pararéel » , 2001 .
[4] S. B. Atienza-Samols,et al. With Contributions by , 1978 .
[5] H. Reme,et al. Use of local grid refinement and a Galerkin technique to study secondary migration in fractured and faulted regions , 1999 .
[6] Stefania Bellavia,et al. A Globally Convergent Newton-GMRES Subspace Method for Systems of Nonlinear Equations , 2001, SIAM J. Sci. Comput..
[7] Yousef Saad,et al. Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..
[8] Hilde Reme,et al. Parallelization of a Compositional Simulator with a Galerkin Coarse/Fine Method , 1999, Euro-Par.
[9] Martin J. Gander,et al. Overlapping Schwarz Waveform Relaxation for the Heat Equation in N Dimensions , 2002 .
[10] Y Maday,et al. Parallel-in-time molecular-dynamics simulations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[11] Magne S. Espedal,et al. Implicit Treatment of Compositional Flow , 2004 .
[12] Graham Horton,et al. A Space-Time Multigrid Method for Parabolic Partial Differential Equations , 1995, SIAM J. Sci. Comput..
[13] STEVE SCHAFFER,et al. A Semicoarsening Multigrid Method for Elliptic Partial Differential Equations with Highly Discontinuous and Anisotropic Coefficients , 1998, SIAM J. Sci. Comput..
[14] Y. Maday,et al. A “Parareal” Time Discretization for Non-Linear PDE’s with Application to the Pricing of an American Put , 2002 .