Consistent variable selection for functional regression models

The dual problem of testing the predictive significance of a particular covariate, and identification of the set of relevant covariates is common in applied research and methodological investigations. To study this problem in the context of functional linear regression models with predictor variables observed over a grid and a scalar response, we consider basis expansions of the functional covariates and apply the likelihood ratio test. Based on p -values from testing each predictor, we propose a new variable selection method, which is consistent in selecting the relevant predictors from set of available predictors that is allowed to grow with the sample size n . Numerical simulations suggest that the proposed variable selection procedure outperforms existing methods found in the literature. A real dataset from weather stations in Japan is analyzed.

[1]  Philippe Vieu,et al.  Partial linear modelling with multi-functional covariates , 2015, Comput. Stat..

[2]  James O. Ramsay,et al.  Functional Data Analysis , 2005 .

[3]  M. Wegkamp,et al.  Consistent variable selection in high dimensional regression via multiple testing , 2006 .

[4]  A. C. Rencher Linear models in statistics , 1999 .

[5]  D. Billheimer Functional Data Analysis, 2nd edition edited by J. O. Ramsay and B. W. Silverman , 2007 .

[6]  P. Vieu,et al.  Rate of uniform consistency for nonparametric estimates with functional variables , 2010 .

[7]  Gareth M. James,et al.  Functional linear regression that's interpretable , 2009, 0908.2918.

[8]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[9]  Mathew W. McLean,et al.  Restricted likelihood ratio tests for linearity in scalar-on-function regression , 2013, Stat. Comput..

[10]  J Gertheiss,et al.  Variable selection in generalized functional linear models , 2013, Stat.

[11]  J. Gertheissa,et al.  Variable Selection in Generalized Functional Linear Models , 2013 .

[12]  Piotr Kokoszka,et al.  Inference for Functional Data with Applications , 2012 .

[13]  A. Cuevas A partial overview of the theory of statistics with functional data , 2014 .

[14]  Michael G. Akritas,et al.  NONPARAMETRIC LACK-OF-FIT TESTING AND CONSISTENT VARIABLE SELECTION , 2014 .

[15]  J. Romo,et al.  Lasso variable selection in functional regression , 2013 .

[16]  Ciprian M. Crainiceanu,et al.  Restricted Likelihood Ratio Tests for Functional Effects in the Functional Linear Model , 2014, Technometrics.

[17]  Enea G. Bongiorno,et al.  Contributions in Infinite-Dimensional Statistics and Related Topics , 2014 .

[18]  Ulrich Reif Orthogonality of cardinal B-splines in weighted Sobolev spaces , 1997 .

[19]  Xiaowei Yang,et al.  Hypothesis testing in functional linear regression models with Neyman's truncation and wavelet thresholding for longitudinal data , 2008, Statistics in medicine.

[20]  Jianqing Fan,et al.  New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis , 2004 .

[21]  S. Konishi,et al.  Functional principal component analysis via regularized Gaussian basis expansions and its application to unbalanced data , 2007 .

[22]  H. Lian,et al.  Inference of Genetic Networks from Time Course Expression Data Using Functional Regression with Lasso Penalty , 2008, Communications in Statistics - Theory and Methods.

[23]  Peter Bühlmann,et al.  p-Values for High-Dimensional Regression , 2008, 0811.2177.

[24]  Li Wang,et al.  Simultaneous variable selection and estimation in semiparametric modeling of longitudinal/clustered data , 2013, 1302.0151.

[25]  I. Johnstone,et al.  Adapting to unknown sparsity by controlling the false discovery rate , 2005, math/0505374.

[26]  Aldo Goia,et al.  A partitioned Single Functional Index Model , 2015, Comput. Stat..

[27]  Frédéric Ferraty,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[28]  S. Ghosh,et al.  Two sample hypothesis testing for functional data , 2013 .

[29]  Philippe Vieu,et al.  Variable selection in infinite-dimensional problems , 2014 .

[30]  Philippe Vieu,et al.  Testing linearity in semi-parametric functional data analysis , 2013, Comput. Stat..

[31]  P. Sarda,et al.  Testing for No Effect in Functional Linear Regression Models, Some Computational Approaches , 2004 .

[32]  Z. Q. John Lu,et al.  Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.

[33]  Frédéric Ferraty,et al.  Additive prediction and boosting for functional data , 2009, Comput. Stat. Data Anal..

[34]  Frédéric Ferraty,et al.  Variable Selection in Semi-Functional Regression Models , 2011 .

[35]  Gareth M. James Generalized linear models with functional predictors , 2002 .

[36]  Ana-Maria Staicu,et al.  Classical testing in functional linear models , 2016, Journal of nonparametric statistics.

[37]  Sadanori Konishi,et al.  Variable selection for functional regression models via the L1 regularization , 2011, Comput. Stat. Data Anal..