Generalized Gaussian quadrature rules on arbitrary polygons

In this paper, we present a numerical algorithm based on group theory and numerical optimization to compute efficient quadrature rules for integration of bivariate polynomials over arbitrary polygons. These quadratures have desirable properties such as positivity of weights and interiority of nodes and can readily be used as software libraries where numerical integration within planar polygons is required. We have used this algorithm for the construction of symmetric and non-symmetric quadrature rules over convex and concave polygons. While in the case of symmetric quadratures our results are comparable to available rules, the proposed algorithm has the advantage of being flexible enough so that it can be applied to arbitrary planar regions for the integration of generalized classes of functions. To demonstrate the efficiency of the new quadrature rules, we have tested them for the integration of rational polygonal shape functions over a regular hexagon. For a relative error of 10−8 in the computation of stiffness matrix entries, one needs at least 198 evaluation points when the region is partitioned, whereas 85 points suffice with our quadrature rule. Copyright © 2009 John Wiley & Sons, Ltd.

[1]  Why do so many cubature formulae have so many positive weights? , 1988 .

[2]  Giovanni Monegato,et al.  Quadrature Rules for Regions Having Regular Hexagonal Symmetry , 1977 .

[3]  P. Silvester,et al.  Symmetric Quadrature Formulae for Simplexes , 1970 .

[4]  James N. Lyness,et al.  Moderate degree symmetric quadrature rules for the triangle j inst maths , 1975 .

[5]  N. Sukumar,et al.  Extended finite element method on polygonal and quadtree meshes , 2008 .

[6]  M. Gellert,et al.  Some criteria for numerically integrated matrices and quadrature formulas for triangles , 1978 .

[7]  Alvise Sommariva,et al.  Product Gauss cubature over polygons based on Green’s integration formula , 2007 .

[8]  S. Wandzurat,et al.  Symmetric quadrature rules on a triangle , 2003 .

[9]  Per-Gunnar Martinsson,et al.  On interpolation and integration in finite-dimensional spaces of bounded functions , 2005 .

[10]  Vladimir Rokhlin,et al.  Generalized Gaussian quadrature rules for systems of arbitrary functions , 1996 .

[11]  Pierre Hillion,et al.  Numerical integration on a triangle , 1977 .

[12]  Gautam Dasgupta,et al.  Integration within Polygonal Finite Elements , 2003 .

[13]  H. T. Rathod,et al.  Symmetric Gauss Legendre quadrature formulas for composite numerical integration over a triangular surface , 2007, Appl. Math. Comput..

[14]  G. R. Cowper,et al.  Gaussian quadrature formulas for triangles , 1973 .

[15]  T. Koornwinder Two-Variable Analogues of the Classical Orthogonal Polynomials , 1975 .

[16]  Glaucio H. Paulino,et al.  Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .

[17]  D. A. Dunavant High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .

[18]  A. Stroud,et al.  Gaussian quadrature formulas , 1966 .

[19]  Norman Yarvin,et al.  Generalized Gaussian Quadratures and Singular Value Decompositions of Integral Operators , 1998, SIAM J. Sci. Comput..

[20]  Acknowledgements , 1992, Experimental Gerontology.

[21]  Y. Takane,et al.  Generalized Inverse Matrices , 2011 .

[22]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[23]  Glaucio H. Paulino,et al.  Honeycomb Wachspress finite elements for structural topology optimization , 2009 .

[24]  Zydrunas Gimbutas,et al.  A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions , 2010, Comput. Math. Appl..

[25]  David R. Noble,et al.  Quadrature rules for triangular and tetrahedral elements with generalized functions , 2008 .

[26]  Symmetric numerical integral formulas for regular polygons , 1990 .

[27]  A. Stroud Approximate calculation of multiple integrals , 1973 .