Fuzzy granular evolving modeling for time series prediction

Modeling large volumes of flowing data from complex systems motivates rethinking several aspects of the machine learning theory. Data stream mining is concerned with extracting structured knowledge from spatio-temporally correlated data. A profusion of systems and algorithms devoted to this end has been constructed under the conceptual framework of granular computing. This paper outlines a fuzzy set based granular evolving modeling — FBeM — approach for learning from imprecise data. Granulation arises because modeling uncertain data dispenses attention to details. The evolving aspect is fundamental to account endless flows of nonstationary data and structural adaptation of models. Experiments with classic Box-Jenkins and Mackey-Glass benchmarks as well as with actual Global40 bond data suggest that the FBeM approach outperforms alternative approaches.

[1]  D.P. Filev,et al.  An approach to online identification of Takagi-Sugeno fuzzy models , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[2]  Juan Luis Castro,et al.  Fuzzy logic controllers are universal approximators , 1995, IEEE Trans. Syst. Man Cybern..

[3]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[4]  Hani Hagras,et al.  zSlices based general type-2 FLC for the control of autonomous mobile robots in real world environments , 2009, 2009 IEEE International Conference on Fuzzy Systems.

[5]  Woei Wan Tan,et al.  A type-2 fuzzy logic controller for dynamic positioning systems , 2010, IEEE ICCA 2010.

[6]  Li-Xin Wang Stable adaptive fuzzy control of nonlinear systems , 1993, IEEE Trans. Fuzzy Syst..

[7]  Hani Hagras,et al.  A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots , 2004, IEEE Transactions on Fuzzy Systems.

[8]  Jerry M. Mendel,et al.  Super-Exponential Convergence of the Karnik–Mendel Algorithms for Computing the Centroid of an Interval Type-2 Fuzzy Set , 2007, IEEE Transactions on Fuzzy Systems.

[9]  Daniel F. Leite,et al.  Evolving Linguistic Fuzzy Models from Data Streams , 2012, Combining Experimentation and Theory.

[10]  Yang-Yin Lin,et al.  A Recurrent Self-Evolving Interval Type-2 Fuzzy Neural Network for Dynamic System Processing , 2009, IEEE Transactions on Fuzzy Systems.

[11]  Witold Pedrycz,et al.  Granular computing: an introduction , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[12]  Yiyu Yao,et al.  Perspectives of granular computing , 2005, 2005 IEEE International Conference on Granular Computing.

[13]  Hani Hagras,et al.  Developing Embedded Type-2 Fuzzy Logic Controllers for Handling the Uncertainties in Marine Diesel Engine Speed Contro , 2008 .

[14]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[15]  Witold Pedrycz,et al.  Evolvable fuzzy systems: some insights and challenges , 2010, Evol. Syst..

[16]  Lotfi A. Zadeh,et al.  Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic , 1997, Fuzzy Sets Syst..

[17]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[18]  John C. Platt A Resource-Allocating Network for Function Interpolation , 1991, Neural Computation.

[19]  Xiao-Jun Zeng,et al.  Approximation accuracy analysis of fuzzy systems as function approximators , 1996, IEEE Trans. Fuzzy Syst..

[20]  Dongrui Wu,et al.  A type-2 fuzzy logic controller for the liquid-level process , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[21]  Jerry M. Mendel,et al.  Computing derivatives in interval type-2 fuzzy logic systems , 2004, IEEE Transactions on Fuzzy Systems.

[22]  Michio Sugeno,et al.  A fuzzy-logic-based approach to qualitative modeling , 1993, IEEE Trans. Fuzzy Syst..

[23]  W. Pedrycz,et al.  Granulation of temporal data: a global view on time series , 2003, 22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003.

[24]  P. Angelov,et al.  Evolving Fuzzy Systems from Data Streams in Real-Time , 2006, 2006 International Symposium on Evolving Fuzzy Systems.

[25]  Bernd Fritzke,et al.  A Growing Neural Gas Network Learns Topologies , 1994, NIPS.

[26]  Tsau Young Lin,et al.  Granular Computing , 2003, RSFDGrC.

[27]  Stephen M. Stigler A Modest Proposal: A New Standard for the Normal , 1982 .

[28]  Tristan Perez,et al.  Kinematic Models for Manoeuvring and Seakeeping of Marine Vessels , 2007 .

[29]  Chuanhou Gao,et al.  Evidence of Chaotic Behavior in Noise From Industrial Process , 2007, IEEE Transactions on Signal Processing.

[30]  Daniel F. Leite,et al.  Evolving granular neural network for semi-supervised data stream classification , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[31]  Ronald R. Yager,et al.  Measures of specificity over continuous spaces under similarity relations , 2008, Fuzzy Sets Syst..

[32]  Edward Hung,et al.  An Efficient Distance Calculation Method for Uncertain Objects , 2007, 2007 IEEE Symposium on Computational Intelligence and Data Mining.

[33]  Nikola K. Kasabov,et al.  HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems , 1999, Neural Networks.

[34]  L X Wang,et al.  Fuzzy basis functions, universal approximation, and orthogonal least-squares learning , 1992, IEEE Trans. Neural Networks.

[35]  G. Goudswaard,et al.  Introduction to Econometrics , 1961 .

[36]  Plamen P. Angelov,et al.  Simpl_eTS: a simplified method for learning evolving Takagi-Sugeno fuzzy models , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[37]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[38]  R. John,et al.  Type-2 Fuzzy Logic: A Historical View , 2007, IEEE Computational Intelligence Magazine.

[39]  Fernando Gomide,et al.  Interval-based evolving modeling , 2009, 2009 IEEE Workshop on Evolving and Self-Developing Intelligent Systems.

[40]  Thor I. Fossen,et al.  A survey on Nonlinear Ship Control: from Theory to Practice , 2000 .

[41]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[42]  Daniel F. Leite,et al.  Granular Approach for Evolving System Modeling , 2010, IPMU.

[43]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[44]  V. Kreinovich,et al.  Gaussian membership functions are most adequate in representing uncertainty in measurements , 1992 .

[45]  Nikola K. Kasabov,et al.  DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction , 2002, IEEE Trans. Fuzzy Syst..

[46]  Thor I. Fossen,et al.  Nonlinear Time-Domain Strip Theory Formulation for Low-Speed Manoeuvring and Station-Keeping , 2004 .