First-principles study of spontaneous polarization in multiferroic BiFeO 3

The ground-state structural and electronic properties of ferroelectric BiFeO 3 are calculated using density functional theory within the local spin-density approximation sLSDAd and the LSDA+U method. The crystal structure is computed to be rhombohedral with space group R3c, and the electronic structure is found to be insulating and antiferromagnetic, both in excellent agreement with available experiments. A large ferroelectric polarization of 90‐ 100 m C/c m 2 is predicted, consistent with the large atomic displacements in the ferroelectric phase and with recent experimental reports, but differing by an order of magnitude from early experiments. One possible explanation is that the latter may have suffered from large leakage currents. However, both past and contemporary measurements are shown to be consistent with the modern theory of polarization, suggesting that the range of reported polarizations may instead correspond to distinct switching paths in structural space. Modern measurements on well-characterized bulk samples are required to confirm this interpretation.

[1]  David Vanderbilt,et al.  First-principles study of (BiScO 3 ) 1-x -(PbTiO 3 ) x piezoelectric alloys , 2003 .

[2]  X. Gonze,et al.  Dynamical atomic charges: The case of ABO(3) compounds , 1998 .

[3]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[4]  T. Kawai,et al.  Coexistence of ferroelectricity and ferromagnetism in BiFeO3–BaTiO3 thin films at room temperature , 1999 .

[5]  A. Tagantsev,et al.  Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features , 2001 .

[6]  M. Veithen,et al.  First-principles study of the dielectric and dynamical properties of lithium niobate , 2002 .

[7]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[8]  K. H. Andersen,et al.  Crystal structure and spiral magnetic ordering of BiFeO3 doped with manganese , 2002 .

[9]  Robert Gerson,et al.  Dielectric hysteresis in single crystal BiFeO3 , 1970 .

[10]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[11]  Jürgen Hafner,et al.  First-principles calculation of the structure and magnetic phases of hematite , 2004 .

[12]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[13]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[14]  Chan,et al.  Density-functional energies and forces with Gaussian-broadened fractional occupations. , 1994, Physical review. B, Condensed matter.

[15]  O. Gunnarsson,et al.  Density-functional calculation of effective Coulomb interactions in metals. , 1991, Physical review. B, Condensed matter.

[16]  Junling Wang,et al.  Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions , 2004 .

[17]  Kiyoyuki Terakura,et al.  Band theory of insulating transition-metal monoxides: Band-structure calculations , 1984 .

[18]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[19]  V. Palkar,et al.  Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films , 2002 .

[20]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[21]  E Steichele,et al.  Spiral magnetic ordering in bismuth ferrite , 1982 .

[22]  Raffaele Resta,et al.  MACROSCOPIC POLARIZATION IN CRYSTALLINE DIELECTRICS : THE GEOMETRIC PHASE APPROACH , 1994 .

[23]  Nicola A. Spaldin,et al.  The origin of ferroelectricity in magnetoelectric YMnO3 , 2004, Nature materials.

[24]  Nicola A. Hill,et al.  Why Are There so Few Magnetic Ferroelectrics , 2000 .

[25]  Ram Seshadri,et al.  Visualizing the Role of Bi 6s “Lone Pairs” in the Off-Center Distortion in Ferromagnetic BiMnO3 , 2001 .

[26]  H. Schmid,et al.  Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3 , 1990 .

[27]  Inbar,et al.  Comparison of the electronic structures and energetics of ferroelectric LiNbO3 and LiTaO3. , 1995, Physical review. B, Condensed matter.

[28]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[29]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[30]  Hamada,et al.  Charge-ordered insulating state of Fe3O4 from first-principles electronic structure calculations. , 1996, Physical review. B, Condensed matter.

[31]  Minoru Noda,et al.  Giant Ferroelectric Polarization Beyond 150 µC/cm2 in BiFeO3 Thin Film , 2004 .

[32]  M. Okuyama,et al.  Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition , 2003 .

[33]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[34]  Stuart A. Wolf,et al.  Spintronics: A Spin-Based Electronics Vision for the Future , 2001, Science.

[35]  G. A. Smolenskii,et al.  REVIEWS OF TOPICAL PROBLEMS: Ferroelectromagnets , 1982 .

[36]  D. Vanderbilt,et al.  Electric polarization as a bulk quantity and its relation to surface charge. , 1993, Physical review. B, Condensed matter.

[37]  Kieffer Mechanical degradation and viscous dissipation in B2O3. , 1994, Physical review. B, Condensed matter.

[38]  Hans Schmid,et al.  Multi-ferroic magnetoelectrics , 1994 .

[39]  Georg Kresse,et al.  Electronic correlation effects in transition-metal sulfides , 2003 .

[40]  Zu-liang Liu,et al.  Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering , 2004 .

[41]  Robert Gerson,et al.  The atomic structure of BiFeO3 , 1969 .

[42]  H. Ohno,et al.  Making nonmagnetic semiconductors ferromagnetic , 1998, Science.

[43]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.