Recent Advances in MEMS Metasurfaces and Their Applications on Tunable Lens

The electromagnetic (EM) properties of metasurfaces depend on both structural design and material properties. microelectromechanical systems (MEMS) technology offers an approach for tuning metasurface EM properties by structural reconfiguration. In the past 10 years, vast applications have been demonstrated based on MEMS metasurfaces, which proved to have merits including, large tunability, fast speed, small size, light weight, capability of dense integration, and compatibility of cost-effective fabrication process. Here, recent advances in MEMS metasurface applications are reviewed and categorized based on the tuning mechanisms, operation band and tuning speed. As an example, the pros and cons of MEMS metasurfaces for tunable lens applications are discussed and compared with traditional tunable lens technologies followed by the summary and outlook.

[1]  S. K. Ting,et al.  Tunable flat lens based on microfluidic reconfigurable metasurface , 2015, 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS).

[2]  Tomislav Debogovic,et al.  MEMS-Reconfigurable Metamaterials and Antenna Applications , 2014, 1404.5570.

[3]  Sailing He,et al.  Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. , 2015, ACS nano.

[4]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.

[5]  A. K. Agarwal,et al.  Adaptive liquid microlenses activated by stimuli-responsive hydrogels , 2006, Nature.

[6]  Zhen Tian,et al.  Efficient flat metasurface lens for terahertz imaging. , 2014, Optics express.

[7]  Wei Zhang,et al.  Miniature adjustable-focus endoscope with a solid electrically tunable lens. , 2015, Optics express.

[8]  Frieder Mugele,et al.  Optofluidic lens with tunable focal length and asphericity , 2014, Scientific Reports.

[9]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[10]  Hu Tao,et al.  Reconfigurable terahertz metamaterials. , 2009, Physical review letters.

[11]  Dim-Lee Kwong,et al.  Arbitrary and Independent Polarization Control In Situ via a Single Metasurface , 2018, Advanced Optical Materials.

[12]  Thomas Taubner,et al.  Phase-change materials for non-volatile photonic applications , 2017, Nature Photonics.

[13]  Hongrui Jiang,et al.  Fiber Endoscopes Utilizing Liquid Tunable-Focus Microlenses Actuated Through Infrared Light , 2011, Journal of Microelectromechanical Systems.

[14]  J. Yeh,et al.  Variable focus dielectric liquid droplet lens. , 2006, Optics express.

[15]  Yuancheng Fan,et al.  Tunable Terahertz Meta-Surface with Graphene Cut-Wires , 2015 .

[16]  J. Kong,et al.  Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. , 2014, Nano letters.

[17]  David J Bishop,et al.  Tunable Infrared Metasurface on a Soft Polymer Scaffold. , 2018, Nano letters.

[18]  Hongrui Jiang,et al.  Tunable-focus microlens arrays on curved surfaces , 2010 .

[19]  Jinghua Teng,et al.  Silicon multi‐meta‐holograms for the broadband visible light , 2016 .

[20]  A. Liu,et al.  Tunable Polarization Conversion and Rotation based on a Reconfigurable Metasurface , 2017, Scientific Reports.

[21]  Koray Aydin,et al.  Highly strained compliant optical metamaterials with large frequency tunability. , 2010, Nano letters.

[22]  Guo-Qiang Lo,et al.  Water‐Resonator‐Based Metasurface: An Ultrabroadband and Near‐Unity Absorption , 2017 .

[23]  B. Guo,et al.  Polarization independent and tunable plasmonic structure for mimicking electromagnetically induced transparency in the reflectance spectrum , 2017 .

[24]  Igal Brener,et al.  Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances , 2014, Nature Communications.

[25]  Tomer Lewi,et al.  Ultrawide Thermo-optic Tuning of PbTe Meta-Atoms. , 2017, Nano letters.

[26]  Nikolay I. Zheludev,et al.  Reconfigurable photonic metamaterials , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[27]  Willie J. Padilla,et al.  Reconfigurable room temperature metamaterial infrared emitter , 2017 .

[28]  Yali Sun,et al.  Electro-optical switch based on continuous metasurface embedded in Si substrate , 2015 .

[29]  Willie J. Padilla,et al.  Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial , 2017, Microsystems & Nanoengineering.

[30]  Yi-Hsin Lin,et al.  An electrically tunable focusing liquid crystal lens with a built-in planar polymeric lens , 2011 .

[31]  A. Mitchell,et al.  Mechanically tunable terahertz metamaterials , 2013 .

[32]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[33]  Qiang Cheng,et al.  Broadband diffusion of terahertz waves by multi-bit coding metasurfaces , 2015, Light: Science & Applications.

[34]  Zhichun Yang,et al.  Steering of SH wave propagation in electrorheological elastomer with a structured meta-slab by tunable phase discontinuities , 2017 .

[35]  Gordon Wetzstein,et al.  Photonic Multitasking Interleaved Si Nanoantenna Phased Array. , 2016, Nano letters.

[36]  Seyedeh Mahsa Kamali,et al.  Multiwavelength metasurfaces through spatial multiplexing , 2016, Scientific Reports.

[37]  Xiang Yin,et al.  Hyperbolic Metamaterial Devices for Wavefront Manipulation , 2018, Laser & Photonics Reviews.

[38]  Antonin Miks,et al.  Analysis of two-element zoom systems based on variable power lenses. , 2010, Optics express.

[39]  T. Bourouina,et al.  Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy , 2012, Nature Communications.

[40]  Willie J Padilla,et al.  Thermochromic Infrared Metamaterials , 2016, Advanced materials.

[41]  Z. Yang,et al.  Tunable metamaterial lens array via metadroplets , 2015, 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS).

[42]  A. Lavrinenko,et al.  Water-Based Metasurfaces for Effective Switching of Microwaves , 2018, IEEE Antennas and Wireless Propagation Letters.

[43]  Pengyu Fan,et al.  Purcell effect for active tuning of light scattering from semiconductor optical antennas , 2017, Science.

[44]  C. Mastrangelo,et al.  Tunable-focus lens for adaptive eyeglasses. , 2017, Optics express.

[45]  S. Xiao,et al.  Broadband and Tunable-Focus Flat Lens with Dielectric Metasurface , 2016, Plasmonics.

[46]  Yi-Pai Huang,et al.  High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display. , 2014, Optics express.

[47]  Federico Capasso,et al.  Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift , 2018, Science Advances.

[48]  Guo-Qiang Lo,et al.  Polarization dependent state to polarization independent state change in THz metamaterials , 2011 .

[49]  Xin Zhang,et al.  Electromechanically Tunable Metasurface Transmission Waveplate at Terahertz Frequencies , 2017, 1711.08003.

[50]  Federico Capasso,et al.  Achromatic Metasurface Lens at Telecommunication Wavelengths. , 2015, Nano letters.

[51]  Han Yan,et al.  Electrostatic pull-in instability in MEMS/NEMS: A review , 2014 .

[52]  Ying Wu,et al.  Controllable transmission and total reflection through an impedance-matched acoustic metasurface , 2014 .

[53]  M. Blencowe Nanoelectromechanical systems , 2005, cond-mat/0502566.

[54]  D. Kwong,et al.  A tunable metamaterial for wide-angle and broadband absorption through meta-water-capsule coatings , 2016, Conference on Lasers and Electro-Optics.

[55]  Yang Cao,et al.  Highly efficient beam steering with a transparent metasurface. , 2013, Optics express.

[56]  J. Oberhammer,et al.  RF MEMS High-Impedance Tuneable Metamaterials for Millimeter-Wave Beam Steering , 2009, 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems.

[57]  Hongrui Jiang,et al.  Electrowetting-driven variable-focus microlens on flexible surfaces. , 2012, Applied physics letters.

[58]  Q. Wahab,et al.  New materials for micro-scale sensors and actuators An engineering review , 2007 .

[59]  A. Alú,et al.  Broadband circular polarizers using plasmonic metasurfaces , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).

[60]  Daniel M. Mittleman,et al.  An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range , 2014 .

[61]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[62]  Yi-Hsin Lin,et al.  An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes. , 2012, Optics express.

[63]  Shengjiang Chang,et al.  Recent Progress on Graphene-Functionalized Metasurfaces for Tunable Phase and Polarization Control , 2019, Nanomaterials.

[64]  J. Andrew Yeh,et al.  Miniaturization of dielectric liquid microlens in package. , 2010, Biomicrofluidics.

[65]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[66]  Susumu Sato,et al.  Liquid-crystal lens with a focal length that is variable in a wide range. , 2004, Applied optics.

[67]  Andrei Faraon,et al.  MEMS-tunable dielectric metasurface lens , 2017, Nature Communications.

[68]  Andrea Massa,et al.  Reconfigurable Electromagnetics Through Metamaterials—A Review , 2015, Proceedings of the IEEE.

[69]  Fei Ding,et al.  Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence , 2017, Light: Science & Applications.

[70]  Willie J. Padilla,et al.  MEMS Based Structurally Tunable Metamaterials at Terahertz Frequencies , 2011 .

[71]  Hiroyuki Fujita,et al.  MEMS reconfigurable metamaterial for terahertz switchable filter and modulator. , 2014, Optics express.

[72]  Seyed Mohamad Amin Momeni Hasan Abadi,et al.  A reflective-type, quasi-optical metasurface filter , 2017 .

[73]  Ai Qun Liu,et al.  Broadband Wide‐Angle Multifunctional Polarization Converter via Liquid‐Metal‐Based Metasurface , 2017 .

[74]  Bin Liang,et al.  Acoustic one-way open tunnel by using metasurface , 2015 .

[75]  R. Agarwal,et al.  Strain Multiplexed Metasurface Holograms on a Stretchable Substrate. , 2017, Nano letters.

[76]  Bo Han Chen,et al.  A broadband achromatic metalens in the visible , 2018, Nature Nanotechnology.

[77]  H. Zappe,et al.  Completely integrated, thermo-pneumatically tunable microlens. , 2011, Optics express.

[78]  Andrea Alù,et al.  Terahertz carpet cloak based on a ring resonator metasurface , 2015 .

[79]  C. Li,et al.  Tunable plasmon lensing in graphene-based structure exhibiting negative refraction , 2017, Scientific Reports.

[80]  M. Kudenov,et al.  Fabrication of ideal geometric-phase holograms with arbitrary wavefronts , 2015 .

[81]  Xiaodong Chen,et al.  Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors , 2018, Advanced materials.

[82]  G. Whitesides,et al.  Fabrication of microfluidic systems in poly(dimethylsiloxane) , 2000, Electrophoresis.

[83]  M. Käll,et al.  Large-Scale Silicon Nanophotonic Metasurfaces with Polarization Independent Near-Perfect Absorption. , 2017, Nano letters.

[84]  Sungho Kang,et al.  Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches. , 2017, Nature nanotechnology.

[85]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[86]  Andrea Alù,et al.  Manipulating light polarization with ultrathin plasmonic metasurfaces , 2011 .

[87]  Shin‐Tson Wu,et al.  Adaptive liquid crystal microlens array enabled by two-photon polymerization. , 2018, Optics express.

[88]  Highly tunable elastic dielectric metasurface lenses , 2016 .

[89]  Lei Zhou,et al.  Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch , 2016, Scientific Reports.

[90]  S. Kuiper,et al.  Variable-focus liquid lens for miniature cameras , 2004 .

[91]  Ai Qun Liu,et al.  Microfluidic metasurface with high tunability for multifunction: Dispersion compensation and beam tracking , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[92]  Eric Plum,et al.  An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. , 2013, Nature nanotechnology.

[93]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[94]  Hong Cai,et al.  A Flat Lens with Tunable Phase Gradient by Using Random Access Reconfigurable Metamaterial , 2015, Advanced materials.

[95]  E. Rothwell,et al.  An origami tunable metamaterial , 2012 .

[96]  Wen-feng Sun,et al.  Spin-selected focusing and imaging based on metasurface lens. , 2015, Optics express.

[97]  Weihua Zhang,et al.  Multi-Direction-Tunable Three-Dimensional Meta-Atoms for Reversible Switching between Midwave and Long-Wave Infrared Regimes. , 2016, Nano letters.

[98]  Sheng Liu,et al.  Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces , 2017, Nature Communications.

[99]  Willie J Padilla,et al.  Dynamical electric and magnetic metamaterial response at terahertz frequencies , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[100]  Tal Ellenbogen,et al.  Composite functional metasurfaces for multispectral achromatic optics , 2016, Nature Communications.

[101]  Hongrui Jiang,et al.  Tunable microlens arrays actuated by various thermo-responsive hydrogel structures , 2010 .

[102]  Shin-Tson Wu,et al.  Electro-optical properties of dielectric liquid microlens , 2011 .

[103]  Junsuk Rho,et al.  Metasurfaces Based on Phase-Change Material as a Reconfigurable Platform for Multifunctional Devices , 2017, Materials.

[104]  Arokiaswami Alphones,et al.  A tunable bandstop filter via the capacitance change of micromachined switches , 2006 .

[105]  Hong Cai,et al.  Adaptable metasurface for dynamic anomalous reflection , 2017 .

[106]  Linjie Zhou,et al.  Numerical investigation of the linearity of graphene-based silicon waveguide modulator. , 2019, Optics express.

[107]  Federico Capasso,et al.  Metalenses: Versatile multifunctional photonic components , 2017, Science.

[108]  Xiaodong Yang,et al.  Full-Color Plasmonic Metasurface Holograms. , 2016, ACS nano.

[109]  Federico Capasso,et al.  Dynamic metasurface lens based on MEMS technology , 2017, 1712.03616.

[110]  X. Y. Zhang,et al.  A Low-Profile High-Gain and Wideband Filtering Antenna With Metasurface , 2016, IEEE Transactions on Antennas and Propagation.

[111]  D. Tsai,et al.  Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle , 2017 .

[112]  Jiafu Wang,et al.  Broadband unidirectional cloaks based on flat metasurface focusing lenses , 2015 .

[113]  Houtong Chen,et al.  Ultra-thin metasurface microwave flat lens for broadband applications. , 2017, Applied physics letters.

[114]  Weili Zhang,et al.  A Tunable Dispersion‐Free Terahertz Metadevice with Pancharatnam–Berry‐Phase‐Enabled Modulation and Polarization Control , 2015, Advanced materials.

[115]  R. Agarwal,et al.  Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate. , 2016, Nano letters.

[116]  Seyedeh Mahsa Kamali,et al.  High-Speed, Phase-Dominant Spatial Light Modulation with Silicon-Based Active Resonant Antennas , 2017 .

[117]  Ai Qun Liu,et al.  Switchable Magnetic Metamaterials Using Micromachining Processes , 2011, Advanced materials.

[118]  Bin Wang,et al.  Low-Voltage-Driving Liquid Crystal Lens , 2010 .

[119]  Xiaorui Wang,et al.  Flat dielectric metasurface lens array for three dimensional integral imaging , 2018 .

[120]  A. Liu,et al.  Microfluidic reconfigurable metasurface: A demonstration of tunable focusing from near field to far field , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[121]  David R. Smith,et al.  Large‐Area Metasurface Perfect Absorbers from Visible to Near‐Infrared , 2015, Advanced materials.