Cofactor biosynthesis: an organic chemist's treasure trove.

Covering: primarily 2000–2005 This Highlight focuses on reactions involved in cofactor biosynthesis that pose interesting mechanistic problems.

[1]  H. Sakuraba,et al.  Crystal Structure of the NAD Biosynthetic Enzyme Quinolinate Synthase* , 2005, Journal of Biological Chemistry.

[2]  C. Roessner,et al.  Multiple biosynthetic pathways for vitamin B12: variations on a central theme. , 2001, Vitamins and hormones.

[3]  G. Mittenhuber,et al.  Phylogenetic analyses and comparative genomics of vitamin B6 (pyridoxine) and pyridoxal phosphate biosynthesis pathways. , 2001, Journal of molecular microbiology and biotechnology.

[4]  S. Steinbacher,et al.  Arabidopsis thaliana Flavoprotein AtHAL3a Catalyzes the Decarboxylation of 4′-Phosphopantothenoylcysteine to 4′-Phosphopantetheine, a Key Step in Coenzyme A Biosynthesis* , 2001, The Journal of Biological Chemistry.

[5]  P. Dorrestein,et al.  Biosynthesis of the thiazole moiety of thiamin pyrophosphate (vitamin B1). , 2003, Biochemistry.

[6]  P. Renz,et al.  Biosynthesis of vitamin B12. Some properties of the 5,6-dimethylbenzimidazole-forming system of Propionibacterium freudenreichii and Propionibacterium shermanii. , 1980, European journal of biochemistry.

[7]  F. McLafferty,et al.  The mechanism of inactivation of 3-hydroxyanthranilate-3,4-dioxygenase by 4-chloro-3-hydroxyanthranilate. , 2005, Biochemistry.

[8]  W. Eisenreich,et al.  A pentacyclic reaction intermediate of riboflavin synthase , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Jarrett,et al.  Crystal Structure of Biotin Synthase, an S-Adenosylmethionine-Dependent Radical Enzyme , 2004, Science.

[10]  L. Nicholson,et al.  Solution structure of ThiS and implications for the evolutionary roots of ubiquitin , 2001, Nature Structural Biology.

[11]  A. Bacher,et al.  Pre-steady-state kinetic analysis of riboflavin synthase using a pentacyclic reaction intermediate as substrate , 2005, Biological chemistry.

[12]  P. Dorrestein,et al.  Reconstitution of a new cysteine biosynthetic pathway in Mycobacterium tuberculosis. , 2005, Journal of the American Chemical Society.

[13]  Hermann Schindelin,et al.  Structural Studies of Molybdopterin Synthase Provide Insights into Its Catalytic Mechanism* , 2003, The Journal of Biological Chemistry.

[14]  Tadhg P Begley,et al.  Structure of the Escherichia coli ThiS-ThiF complex, a key component of the sulfur transfer system in thiamin biosynthesis. , 2006, Biochemistry.

[15]  W. Pfleiderer,et al.  Pteridine, LVII. Synthesen und Eigenschaften von Lumazin‐N‐oxiden , 1973 .

[16]  E. Strauss,et al.  The Selectivity for Cysteine over Serine in Coenzyme A Biosynthesis , 2005, Chembiochem : a European journal of chemical biology.

[17]  K. Yamada,et al.  The origin of the sulfur atom of thiamin. , 1987, Biochimica et biophysica acta.

[18]  E. Strauss,et al.  Stereochemical studies on phosphopantothenoylcysteine decarboxylase from Escherichia coli. , 2003, Bioorganic & medicinal chemistry letters.

[19]  B. Schulman,et al.  Structural analysis of Escherichia coli ThiF. , 2005, Journal of molecular biology.

[20]  G. Plaut,et al.  The formation of riboflavin from 6,7-dimethyl-8-ribityllumazine in acid media. , 1969, Tetrahedron letters.

[21]  N. Ugulava,et al.  Biotin synthase contains two distinct iron-sulfur cluster binding sites: chemical and spectroelectrochemical analysis of iron-sulfur cluster interconversions. , 2001, Biochemistry.

[22]  R. White,et al.  Mechanism for the desulfurization of L-cysteine catalyzed by the nifS gene product. , 1994, Biochemistry.

[23]  P. Roach,et al.  Thiamine biosynthesis in Escherichia coli: isolation and initial characterisation of the ThiGH complex , 2003, FEBS letters.

[24]  J. Cronan,et al.  Biotin synthase is catalytic in vivo, but catalysis engenders destruction of the protein. , 2005, Chemistry & biology.

[25]  D. Cane Prelog Lecture: Mechanism and Structure of Biosynthetic Enzymes. The Biosynthesis of Vitamin B6 , 2003 .

[26]  N. Ugulava,et al.  Evidence from Mössbauer spectroscopy for distinct [2Fe-2S](2+) and [4Fe-4S](2+) cluster binding sites in biotin synthase from Escherichia coli. , 2002, Journal of the American Chemical Society.

[27]  P. Dorrestein,et al.  Formation of the dimethylbenzimidazole ligand of coenzyme B(12) under physiological conditions by a facile oxidative cascade. , 2003, Organic letters.

[28]  R. Mehl,et al.  Biosynthesis of the thiamin pyrimidine: the reconstitution of a remarkable rearrangement reaction. , 2004, Organic & biomolecular chemistry.

[29]  Biosynthesis of Vitamin B6: Origin of the Oxygen Atoms of Pyridoxol Phosphate , 2000 .

[30]  A. Scott,et al.  Discovering nature's diverse pathways to vitamin B12: a 35-year odyssey. , 2003, The Journal of organic chemistry.

[31]  R. M. Cicchillo,et al.  Escherichia coli quinolinate synthetase does indeed harbor a [4Fe-4S] cluster. , 2005, Journal of the American Chemical Society.

[32]  M. Lindenmeyer,et al.  Aerobic synthesis of vitamin B12: ring contraction and cobalt chelation. , 2005, Biochemical Society transactions.

[33]  Sean V. Taylor,et al.  Overexpression of recombinant proteins with a C‐terminal thiocarboxylate: Implications for protein semisynthesis and thiamin biosynthesis , 1998, Protein science : a publication of the Protein Society.

[34]  P. Frey,et al.  S-Adenosylmethionine: a wolf in sheep's clothing, or a rich man's adenosylcobalamin? , 2003, Chemical reviews.

[35]  B. Tse Sum Bui,et al.  Biotin synthase mechanism: an overview. , 2005, Biochemical Society transactions.

[36]  E. Marsh,et al.  S-adenosylmethionine radical enzymes. , 2004, Bioorganic chemistry.

[37]  W. Römisch,et al.  Structures and reaction mechanisms of riboflavin synthases of eubacterial and archaeal origin. , 2005, Biochemical Society transactions.

[38]  C. T. Lauhon,et al.  The iscS Gene in Escherichia coli Is Required for the Biosynthesis of 4-Thiouridine, Thiamin, and NAD* , 2000, The Journal of Biological Chemistry.

[39]  F. McLafferty,et al.  Phosphopantothenoylcysteine Synthetase from Escherichia coli , 2001, The Journal of Biological Chemistry.

[40]  K. Rajagopalan,et al.  Mechanistic and Mutational Studies of Escherichia coli Molybdopterin Synthase Clarify the Final Step of Molybdopterin Biosynthesis* , 2003, The Journal of Biological Chemistry.

[41]  Enzyme-ligand complexes of pyridoxine 5'-phosphate synthase: implications for substrate binding and catalysis. , 2002, Journal of molecular biology.

[42]  F. Leeper,et al.  Biosynthesis of porphyrins and related macrocycles. Part 44. Synthetic and stereochemical studies on the proposed spiro intermediate for biosynthesis of the natural porphyrins , 1996 .

[43]  A. von Eckardstein,et al.  Adenovirus-mediated Rescue of Lipoprotein Lipase-deficient Mice , 2001, The Journal of Biological Chemistry.

[44]  P. Dorrestein,et al.  Structural and mechanistic studies on ThiO, a glycine oxidase essential for thiamin biosynthesis in Bacillus subtilis. , 2003, Biochemistry.

[45]  J. Lipscomb,et al.  Single-turnover kinetics of homoprotocatechuate 2,3-dioxygenase. , 2004, Biochemistry.

[46]  R. Huber,et al.  Evolution of vitamin B2 biosynthesis. A novel class of riboflavin synthase in Archaea. , 2004, Journal of molecular biology.

[47]  Tadhg P Begley,et al.  Three-dimensional Structure of YaaE from Bacillus subtilis, a Glutaminase Implicated in Pyridoxal-5′-phosphate Biosynthesis* , 2004, Journal of Biological Chemistry.

[48]  W. Donk,et al.  Novel cofactors via post-translational modifications of enzyme active sites. , 2000, Chemistry & biology.

[49]  R. Mendel,et al.  Mechanistic Studies of Human Molybdopterin Synthase Reaction and Characterization of Mutants Identified in Group B Patients of Molybdenum Cofactor Deficiency* , 2003, Journal of Biological Chemistry.

[50]  K. Colabroy,et al.  Structural studies on 3-hydroxyanthranilate-3,4-dioxygenase: the catalytic mechanism of a complex oxidation involved in NAD biosynthesis. , 2005, Biochemistry.

[51]  H. De Greve,et al.  The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway , 2004, Molecular microbiology.

[52]  C. Hill,et al.  Crystal structure of human uroporphyrinogen III synthase , 2001, The EMBO journal.

[53]  N. Ugulava,et al.  Spectroscopic changes during a single turnover of biotin synthase: destruction of a [2Fe-2S] cluster accompanies sulfur insertion. , 2001, Biochemistry.

[54]  Dieter Jahn,et al.  Structure and function of radical SAM enzymes. , 2004, Current opinion in chemical biology.

[55]  F W McLafferty,et al.  Biosynthesis of the thiazole moiety of thiamin in Escherichia coli: Identification of an acyldisulfide-linked protein–protein conjugate that is functionally analogous to the ubiquitin/E1 complex , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[56]  P. Dorrestein,et al.  The biosynthesis of the thiazole phosphate moiety of thiamin: the sulfur transfer mediated by the sulfur carrier protein ThiS. , 2004, Chemistry & biology.

[57]  N. Amrhein,et al.  On the Two Components of Pyridoxal 5′-Phosphate Synthase from Bacillus subtilis* , 2005, Journal of Biological Chemistry.

[58]  B. Bui,et al.  Biotin Synthase Mechanism: Evidence for Hydrogen Transfer from the Substrate into Deoxyadenosine , 1999 .

[59]  W. Pfleiderer,et al.  Pteridine, XLIV. Über die Synthese und Struktur N‐8‐substituierter Pterine und Lumazine , 1971 .

[60]  J. Jarrett The novel structure and chemistry of iron-sulfur clusters in the adenosylmethionine-dependent radical enzyme biotin synthase. , 2005, Archives of biochemistry and biophysics.

[61]  G. Plaut,et al.  Synthesis, properties, and base-catalyzed interactions of 8-substituted 6,7-dimethyllumazines , 1971 .

[62]  Finian J. Leeper,et al.  Biosynthesis of the pigments of life: mechanistic studies on the conversion of porphobilinogen to uroporphyrinogen III , 1990 .

[63]  H. Wood,et al.  The biosynthesis of pteridines. V. The synthesis of riboflavin from pteridine precursors. , 1968, Journal of the Chemical Society. Perkin transactions 1.

[64]  F. McLafferty,et al.  The enzymology of sulfur activation during thiamin and biotin biosynthesis. , 1999, Current opinion in chemical biology.

[65]  T. Bugg,et al.  Enzymatic cleavage of aromatic rings: mechanistic aspects of the catechol dioxygenases and later enzymes of bacterial oxidative cleavage pathways , 1998 .

[66]  Joanne I. Yeh,et al.  Multistate binding in pyridoxine 5'-phosphate synthase: 1.96 A crystal structure in complex with 1-deoxy-D-xylulose phosphate. , 2002, Biochemistry.

[67]  F. McLafferty,et al.  Mechanistic studies on phosphopantothenoylcysteine decarboxylase: trapping of an enethiolate intermediate with a mechanism-based inactivating agent. , 2004, Biochemistry.

[68]  G. Plaut,et al.  Investigations of structures of substituted lumazines by deuterium exchange and nuclear magnetic resonance spectroscopy. , 1970, Biochemistry.

[69]  B. Huynh,et al.  Role of the [2Fe-2S] cluster in recombinant Escherichia coli biotin synthase. , 2004, Biochemistry.

[70]  A. Bacher,et al.  Solution structures of 6,7-dimethyl-8-substituted-lumazines. Carbon-13 NMR evidence for intramolecular ether formation , 1986 .

[71]  T. Bugg,et al.  Acid-base catalysis in the extradiol catechol dioxygenase reaction mechanism: site-directed mutagenesis of His-115 and His-179 in Escherichia coli 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB). , 2004, Biochemistry.

[72]  J. Klinman,et al.  Mechanisms of biosynthesis of protein-derived redox cofactors. , 2001, Vitamins and hormones.

[73]  J. Lipscomb,et al.  Aromatic ring cleavage by homoprotocatechuate 2,3-dioxygenase: role of His200 in the kinetics of interconversion of reaction cycle intermediates. , 2005, Biochemistry.

[74]  Pieter C Dorrestein,et al.  Thiamin biosynthesis in Bacillus subtilis: structure of the thiazole synthase/sulfur carrier protein complex. , 2004, Biochemistry.

[75]  Janet L. Smith,et al.  A New Arrangement of (β/α)8 Barrels in the Synthase Subunit of PLP Synthase*♦ , 2005, Journal of Biological Chemistry.

[76]  T. Begley,et al.  Enzymatic reactions involving novel mechanisms of carbanion stabilization. , 2004, Current opinion in chemical biology.

[77]  J. Sebat,et al.  A Pseudomonas stutzeri gene cluster encoding the biosynthesis of the CCl4-dechlorination agent pyridine-2,6-bis(thiocarboxylic acid). , 2000, Environmental microbiology.

[78]  F. McLafferty,et al.  Reconstitution and biochemical characterization of a new pyridoxal-5'-phosphate biosynthetic pathway. , 2005, Journal of the American Chemical Society.

[79]  S. Steinbacher,et al.  Crystal structure of the plant PPC decarboxylase AtHAL3a complexed with an ene-thiol reaction intermediate. , 2003, Journal of molecular biology.

[80]  P. Dorrestein,et al.  Oxidative cascades: a facile biosynthetic strategy for the assembly of complex molecules. , 2005, Bioorganic chemistry.

[81]  Robert L. White,et al.  Biosynthesis of vitamin B1 in yeast. Origin of the thiazole unit , 1979 .

[82]  F. McLafferty,et al.  Thiamin Biosynthesis in Escherichia coli , 1998, The Journal of Biological Chemistry.

[83]  Robert L. White,et al.  Thiamin biosynthesis in yeast. Origin of the five-carbon unit of the thiazole moiety , 1982 .

[84]  M. Fontecave,et al.  Iron-sulfur center of biotin synthase and lipoate synthase. , 2000, Biochemistry.

[85]  K. Colabroy,et al.  The pyridine ring of NAD is formed by a nonenzymatic pericyclic reaction. , 2005, Journal of the American Chemical Society.

[86]  J. Zeidler,et al.  Biosynthesis of vitamin B1 in yeast. Derivation of the pyrimidine unit from pyridoxine and histidine. Intermediacy of urocanic acid. , 2003, Journal of the American Chemical Society.

[87]  T. Bugg,et al.  Solving the riddle of the intradiol and extradiol catechol dioxygenases: how do enzymes control hydroperoxide rearrangements? , 2001 .

[88]  Sean V. Taylor,et al.  The biosynthesis of the thiazole phosphate moiety of thiamin (vitamin B1): the early steps catalyzed by thiazole synthase. , 2004, Journal of the American Chemical Society.

[89]  P. Renz,et al.  Biosynthesis of cobalamin in Salmonella typhimurium: transformation of riboflavin into the 5,6-dimethylbenzimidazole moiety , 1998, Archives of Microbiology.

[90]  Markus Fischer,et al.  Biosynthesis of flavocoenzymes. , 2005, Natural product reports.

[91]  L. Poppe,et al.  Friedel-Crafts-type mechanism for the enzymatic elimination of ammonia from histidine and phenylalanine. , 2005, Angewandte Chemie.

[92]  R. L. White,et al.  Thiamin biosynthesis in Saccharomyces cerevisiae. Origin of carbon-2 of the thiazole moiety. , 1979, The Biochemical journal.

[93]  S. Santabarbara,et al.  Identification and Characterization of a Novel Vitamin B12 (Cobalamin) Biosynthetic Enzyme (CobZ) from Rhodobacter capsulatus, Containing Flavin, Heme, and Fe-S Cofactors* , 2005, Journal of Biological Chemistry.