Efficient luminescent down-shifting detectors based on colloidal quantum dots for dual-band detection applications.

A colloidal quantum dot (QD) luminescent down-shifting (LDS) layer is used to sensitize an InGaAs short wavelength infrared photodetector to the near UV spectral band. An average improvement in the external quantum efficiency (EQE) from 1.8% to 21% across the near UV is realized using an LDS layer consisting of PbS/CdS core/shell QDs embedded in PMMA. A simple model is used to fit the experimental EQE data. A UV sensitive InGaAs imaging array is demonstrated and the effect of the LDS layer on the optical resolution is calculated. The bandwidth of the LDS detector under UV illumination is characterized and shown to be determined by the photoluminescence lifetime of the QDs.

[1]  Cherie R. Kagan,et al.  Electronic energy transfer in CdSe quantum dot solids. , 1996, Physical review letters.

[2]  H. Holloway,et al.  Collection efficiency and crosstalk in closely spaced photodiode arrays , 1986 .

[3]  B. Richards,et al.  Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review , 2009 .

[4]  R. Jain,et al.  Compact biocompatible quantum dots via RAFT-mediated synthesis of imidazole-based random copolymer ligand. , 2009, Journal of the American Chemical Society.

[5]  J. Warner,et al.  Time-resolved photoluminescence spectroscopy of ligand-capped PbS nanocrystals , 2005, Nanotechnology.

[6]  P. Guyot-Sionnest,et al.  Interband and Intraband Optical Studies of PbSe Colloidal Quantum Dots , 2002 .

[7]  Margaret Buchanan,et al.  Simultaneous detection of ultraviolet and infrared radiation in a single GaN/GaAlN heterojunction. , 2008, Optics letters.

[8]  R. Cingolani,et al.  Nanopatterning of colloidal nanocrystals emitters dispersed in a PMMA matrix by e-beam lithography , 2006 .

[9]  A. Zunger,et al.  The Excitonic Exchange Splitting and Radiative Lifetime in PbSe Quantum Dots , 2007 .

[10]  Philip C. Eames,et al.  Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices , 2007 .

[11]  Chee Wei Wong,et al.  Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 microm for controllable forster energy transfer. , 2008, Nano letters.

[12]  A. G. U. Perera,et al.  Wavelength agile superlattice quantum dot infrared photodetector , 2009 .

[13]  Lenneke H. Slooff,et al.  Efficiency enhancement of solar cells by application of a polymer coating containing a luminescent dye , 2007 .

[14]  Darrick J. Williams,et al.  Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. , 2008, Journal of the American Chemical Society.

[15]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[16]  M. Bawendi,et al.  Emission Intensity Dependence and Single-Exponential Behavior In Single Colloidal Quantum Dot Fluorescence Lifetimes , 2004 .

[17]  Ludovico Cademartiri,et al.  Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals. , 2006, The journal of physical chemistry. B.

[18]  R. Nitschke,et al.  Quantum dots versus organic dyes as fluorescent labels , 2008, Nature Methods.

[19]  K. Alex McIntosh,et al.  Crosstalk analysis of integrated Geiger-mode avalanche photodiode focal plane arrays , 2009, Defense + Commercial Sensing.

[20]  Ludovico Cademartiri,et al.  Size-dependent extinction coefficients of PbS quantum dots. , 2006, Journal of the American Chemical Society.

[21]  Nicholas J. Ekins-Daukes,et al.  A new approach to modelling quantum dot concentrators , 2003 .

[22]  D. Starikov,et al.  Dual-band UV/IR optical sensors for fire and flame detection and target recognition , 2004, ISA/IEEE Sensors for Industry Conference, 2004. Proceedings the.

[23]  A. Bezinger,et al.  GaN/AlGaN ultraviolet/infrared dual-band detector , 2006 .