The synthesis and properties of iridium cored dendrimers with carbazole dendrons

[1]  A. van Dijken,et al.  Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: tuning the HOMO level without influencing the triplet energy in small molecules. , 2004, Journal of the American Chemical Society.

[2]  Dieter Neher,et al.  Polymer electrophosphorescence devices with high power conversion efficiencies , 2004 .

[3]  E. Namdas,et al.  Solution‐Processable Red Phosphorescent Dendrimers for Light‐Emitting Device Applications , 2004 .

[4]  M. Higuchi,et al.  Novel carbazole dendrimers having a metal coordination site as a unique hole-transport material , 2004 .

[5]  H. Bässler,et al.  Charge transport in highly efficient iridium cored electrophosphorescent dendrimers , 2004 .

[6]  E. Namdas,et al.  Photophysics of Fac-Tris(2-Phenylpyridine) Iridium(III) Cored Electroluminescent Dendrimers in Solution and Films , 2004 .

[7]  E. Namdas,et al.  Synthesis and properties of highly efficient electroluminescent green phosphorescent iridium cored dendrimers , 2003 .

[8]  E. Namdas,et al.  Influence of molecular structure on the properties of dendrimer light-emitting diodes , 2003 .

[9]  Sergey Lamansky,et al.  Synthesis and characterization of facial and meridional tris-cyclometalated iridium(III) complexes. , 2003, Journal of the American Chemical Society.

[10]  N. McClenaghan,et al.  Ruthenium(II) dendrimers containing carbazole-based chromophores as branches. , 2003, Journal of the American Chemical Society.

[11]  I. Samuel,et al.  The Effect of Core Delocalization on Intermolecular Interactions in Conjugated Dendrimers , 2003 .

[12]  Yongmin Liang,et al.  High-efficiency red-light emission from polyfluorenes grafted with cyclometalated iridium complexes and charge transport moiety. , 2003, Journal of the American Chemical Society.

[13]  Jang‐Joo Kim,et al.  Polymer electrophosphorescent device: comparison of phosphorescent dye doped and coordinated systems , 2003 .

[14]  Xiang Zhou,et al.  High-efficiency electrophosphorescent organic light-emitting diodes with double light-emitting layers , 2002 .

[15]  Ching Wan Tang,et al.  Light-emitting diodes based on phosphorescent guest/polymeric host systems , 2002 .

[16]  I. Samuel,et al.  Synthesis and excited state spectroscopy of tris(distyrylbenzenyl)amine-cored electroluminescent dendrimers , 2002 .

[17]  Ifor D. W. Samuel,et al.  Green Phosphorescent Dendrimer for Light‐Emitting Diodes , 2002 .

[18]  Ifor D. W. Samuel,et al.  High-efficiency green phosphorescence from spin-coated single-layer dendrimer light-emitting diodes , 2002 .

[19]  Y. Tao,et al.  Light-Emitting Diodes Based on a Carbazole-Derivatized Dopant: Origin of Dopant Excitation as a Function of the Device Structure , 2002 .

[20]  Serge I. Gorelsky,et al.  Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods , 2001 .

[21]  Y. Tao,et al.  Light-emitting carbazole derivatives: potential electroluminescent materials. , 2001, Journal of the American Chemical Society.

[22]  I. Samuel,et al.  Structure-property relationships in conjugated molecules , 2001 .

[23]  Shizuo Tokito,et al.  Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer , 2001 .

[24]  Kenji Nakamura,et al.  Optimization of emitting efficiency in organic LED cells using Ir complex , 2001 .

[25]  W. Marshall,et al.  New, efficient electroluminescent materials based onorganometallic Ir complexes , 2001 .

[26]  Stephen R. Forrest,et al.  High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials , 2000 .

[27]  Jeffrey S. Moore,et al.  Synthesis and Characterization of 9-Phenylcarbazole Monodendrons: An Exploration of Peripheral Groups To Facilitate Purification , 2000 .

[28]  Moore,et al.  Synthesis and characterization of monodendrons based on 9-phenylcarbazole , 2000, The Journal of organic chemistry.

[29]  S. Forrest,et al.  VERY HIGH-EFFICIENCY GREEN ORGANIC LIGHT-EMITTING DEVICES BASED ON ELECTROPHOSPHORESCENCE , 1999 .

[30]  A. Spek,et al.  Synthesis of Novel Phosphaalkene-Based Bidentate Ligands Mes*(Me)P=CH(3-R-Ar) (R = Pyridyl, Carbaldimino) and Formation of Three-Membered Palladacycles Mes*(Me)P-CH(3-R-Ar)-PdCl by Carbapalladation of the P=C Double Bond , 1999 .

[31]  I. Samuel,et al.  CONJUGATED DENDRIMERS FOR LIGHT-EMITTING DIODES : EFFECT OF GENERATION , 1999 .

[32]  Ifor D. W. Samuel,et al.  Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers , 1995 .

[33]  T. Brunold,et al.  Facial tris cyclometalated rhodium(3+) and iridium(3+) complexes: their synthesis, structure, and optical spectroscopic properties , 1994 .

[34]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[35]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[36]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[37]  R. Watts,et al.  Photophysical effects of metal-carbon .sigma. bonds in ortho-metalated complexes of iridium(III) and rhodium(III) , 1984 .

[38]  G. Gritzner,et al.  Recommendations on reporting electrode potentials in nonaqueous solvents: IUPC commission on electrochemistry , 1984 .

[39]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[40]  J. Demas,et al.  Measurement of photoluminescence quantum yields. Review , 1971 .