Spline spaces with mixed orders of continuity over T-meshes

In this paper, we introduce the concept of spline spaces with mixed orders of continuity over T-meshes. Then, the dimensions of the cubic spline spaces with continuity of order one and locally discontinuous over hierarchical T-meshes are presented by the B-net method. From the viewpoint of processing geometry data, a non-negative basis set with local support and partition of unity is constructed. Finally, the behavior of this type of spline is analyzed with the help of examples in image processing and finite element analysis.

[1]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[2]  James Ferguson,et al.  Multivariable Curve Interpolation , 1964, JACM.

[3]  Jiansong Deng,et al.  Dimensions of spline spaces over T-meshes , 2006 .

[4]  Magnus Egerstedt,et al.  Control Theoretic Splines: Optimal Control, Statistics, and Path Planning , 2009 .

[5]  A. Haar Zur Theorie der orthogonalen Funktionensysteme , 1910 .

[6]  I. J. Schoenberg Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae , 1946 .

[7]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[8]  Li Tian,et al.  Adaptive finite element methods for elliptic equations over hierarchical T-meshes , 2011, J. Comput. Appl. Math..

[9]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[10]  Dongxu Qi,et al.  The complete orthogonal V-system and its applications , 2007 .

[11]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[12]  Jiansong Deng,et al.  Dimensions of biquadratic spline spaces over T-meshes , 2008, J. Comput. Appl. Math..

[13]  F. B. Richards,et al.  A Gibbs phenomenon for spline functions , 1991 .

[14]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[15]  Yuri Bazilevs,et al.  Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .

[16]  H. Nguyen-Xuan,et al.  Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .

[17]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[18]  D. X. Qi,et al.  A Sequence of Piecewise Orthogonal Polynomials , 1984 .

[19]  Larry L. Schumaker,et al.  The dimension of bivariate spline spaces of smoothnessr for degreed≥4r+1 , 1987 .