Spline spaces with mixed orders of continuity over T-meshes
暂无分享,去创建一个
Meng Wu | Jiansong Deng | Falai Chen | Weihong Zhang | Zhouwang Yang | Falai Chen | Jiansong Deng | Meng Wu | Zhouwang Yang | Weihong Zhang
[1] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[2] James Ferguson,et al. Multivariable Curve Interpolation , 1964, JACM.
[3] Jiansong Deng,et al. Dimensions of spline spaces over T-meshes , 2006 .
[4] Magnus Egerstedt,et al. Control Theoretic Splines: Optimal Control, Statistics, and Path Planning , 2009 .
[5] A. Haar. Zur Theorie der orthogonalen Funktionensysteme , 1910 .
[6] I. J. Schoenberg. Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae , 1946 .
[7] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[8] Li Tian,et al. Adaptive finite element methods for elliptic equations over hierarchical T-meshes , 2011, J. Comput. Appl. Math..
[9] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..
[10] Dongxu Qi,et al. The complete orthogonal V-system and its applications , 2007 .
[11] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[12] Jiansong Deng,et al. Dimensions of biquadratic spline spaces over T-meshes , 2008, J. Comput. Appl. Math..
[13] F. B. Richards,et al. A Gibbs phenomenon for spline functions , 1991 .
[14] Jiansong Deng,et al. Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..
[15] Yuri Bazilevs,et al. Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .
[16] H. Nguyen-Xuan,et al. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .
[17] Tony DeRose,et al. Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.
[18] D. X. Qi,et al. A Sequence of Piecewise Orthogonal Polynomials , 1984 .
[19] Larry L. Schumaker,et al. The dimension of bivariate spline spaces of smoothnessr for degreed≥4r+1 , 1987 .