BUCKLING AND DYNAMIC BEHAVIOUR OF LAMINATED COMPOSITE STRUCTURES USING A DISCRETE HIGHER-ORDER DISPLACEMENT MODEL

This paper deals with buckling and free vibrations of multilaminated structures of arbitrary geometry and lay-up using a single layer higher order shear deformation theory discrete model. This model is based on an eight-node C0 serendipity finite element with 10 degrees of freedom per node to contemplate general applications. The present model is tested on the evaluation of buckling loads and free vibrations of multilaminated plates and shells. The effects of different number of layers, lamination angles, material anisotropy, and length or radius to thickness ratios are studied.

[1]  L. K. Stevens,et al.  A Higher Order Theory for Free Vibration of Orthotropic, Homogeneous, and Laminated Rectangular Plates , 1984 .

[2]  Siak Piang Lim,et al.  Vibration of laminated orthotropic plates using a simplified higher-order deformation theory , 1988 .

[3]  Tarun Kant,et al.  A Simple Finite Element Formulation of a Higher-order Theory for Unsymmetrically Laminated Composite Plates , 1988 .

[4]  J. N. Reddy,et al.  Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory , 1986 .

[5]  Tarun Kant,et al.  A critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches , 1993 .

[6]  J. N. Reddy,et al.  Influence of edge conditions on the modal characteristics of cross-ply laminated shells , 1990 .

[7]  R. Christensen,et al.  A HIGH-ORDER THEORY OF PLATE DEFORMATION, PART 1: HOMOGENEOUS PLATES , 1977 .

[8]  J. N. Reddy,et al.  Analysis of laminated composite plates using a higher‐order shear deformation theory , 1985 .

[9]  J. Reddy,et al.  THEORIES AND COMPUTATIONAL MODELS FOR COMPOSITE LAMINATES , 1994 .

[10]  Rakesh K. Kapania,et al.  Recent advances in analysis of laminated beams and plates. Part I - Sheareffects and buckling. , 1989 .

[11]  I. H. Marshall,et al.  Composite Structures 4 , 1987 .

[12]  R. Christensen,et al.  A High-Order Theory of Plate Deformation—Part 2: Laminated Plates , 1977 .

[13]  J. Reddy An evaluation of equivalent-single-layer and layerwise theories of composite laminates , 1993 .

[14]  S. Liu,et al.  A vibration analysis of composite laminated plates , 1991 .

[15]  M. Levinson,et al.  An accurate, simple theory of the statics and dynamics of elastic plates , 1980 .

[16]  J. Whitney,et al.  Shear Correction Factors for Orthotropic Laminates Under Static Load , 1973 .

[17]  G. E. O. Widera,et al.  Free Vibration Analysis of Composite Plates , 2000 .

[18]  J. N. Reddy,et al.  A review of refined theories of laminated composite plates , 1990 .

[19]  A. Leissa A Review of Laminated Composite Plate Buckling , 1987 .

[20]  Ahmed A. Khdeir,et al.  Free vibration and buckling of unsymmetric cross-ply laminated plates using a refined theory , 1989 .

[21]  Ozden O. Ochoa,et al.  Finite Element Analysis of Composite Laminates , 1992 .

[22]  Arthur W. Leissa,et al.  An Overview of Composite Plate Buckling , 1987 .

[23]  H. S. Morgan,et al.  Buckling and Vibration of Antisymmetrically Laminated Angle-Ply Rectangular Plates , 1973 .

[24]  Ahmed K. Noor,et al.  Finite element buckling and postbuckling solutions for multilayered composite panels , 1994 .

[25]  Liviu Librescu,et al.  Elastostatics and Kinetics of Anisotropic and Heterogeneous Shell-Type Structures , 1975 .

[26]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[27]  A. Ghosh,et al.  Buckling of laminated plates—a simple finite element based on higher-order theory , 1994 .

[28]  J. N. Reddy,et al.  On refined theories of composite laminates , 1990 .

[29]  A. V. Krishna Murty Higher order theory for vibrations of thick plates , 1977 .

[30]  J. N. Reddy,et al.  A GENERAL NON-LINEAR THIRD-ORDER THEORY OF PLATES WITH MODERATE THICKNESS , 1990 .

[31]  Paul Seide,et al.  An improved approximate theory for the bending of laminated plates , 1980 .

[32]  O. Zienkiewicz The Finite Element Method In Engineering Science , 1971 .

[33]  J. N. Reddy,et al.  A refined nonlinear theory of plates with transverse shear deformation , 1984 .

[34]  Tarun Kant,et al.  Finite element transient dynamic analysis of isotropic and fibre reinforced composite plates using a higher-order theory , 1988 .

[35]  C. Hong,et al.  Buckling behavior of laminated composite cylindrical panels under axial compression , 1988 .

[36]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[37]  Tai-Yan Kam,et al.  Buckling of shear deformable laminated composite plates , 1992 .

[38]  A. Ghosh,et al.  A simple finite element for the analysis of laminated plates , 1992 .

[39]  Ozden O. Ochoa,et al.  Buckling of Composite Plates Using Shear Deformable Finite Elements , 1986 .

[40]  J. Reddy,et al.  Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory , 1985 .

[41]  T. Kant,et al.  Geometrically non-linear analysis of symmetrically laminated composite and sandwich shells with a higher-order theory and C0 finite elements , 1994 .

[42]  J. N. Reddy,et al.  Buckling and vibration of laminated composite plates using various plate theories , 1989 .

[43]  Rakesh K. Kapania,et al.  Recent Advances in Analysis of Laminated Beams and Plates, Part II: Vibrations and Wave Propagation , 1989 .

[44]  Charles W. Bert,et al.  A critical evaluation of new plate theories applied to laminated composites , 1984 .

[45]  Tarun Kant,et al.  Free vibration of symmetrically laminated plates using a higher‐order theory with finite element technique , 1989 .

[46]  Ahmed K. Noor,et al.  Assessment of computational models for multilayered anisotropic plates , 1990 .