Trigonometrically fitted two-step hybrid methods for special second order ordinary differential equations

Abstract: The purpose of this paper is to derive two-step hybrid methods for second order ordinary differential equations with oscillatory or periodic solutions. We show the constructive technique of methods based on trigonometric and mixed polynomial fitting and consider the linear stability analysis of such methods. We then carry out some numerical experiments underlining the properties of the derived classes of methods.

[1]  Beatrice Paternoster,et al.  Runge-Kutta(-Nystro¨m) methods for ODEs with periodic solutions based on trigonometric polynomials , 1998 .

[2]  John P. Coleman,et al.  Mixed collocation methods for y ′′ =f x,y , 2000 .

[3]  Hans Van de Vyver Phase-fitted and amplification-fitted two-step hybrid methods for y˝= f ( x,y ) , 2007 .

[4]  H. De Meyer,et al.  On a new type of mixed interpolation , 1990 .

[5]  John C. Butcher,et al.  General linear methods for ordinary differential equations , 2009, Math. Comput. Simul..

[6]  L. Kramarz Stability of collocation methods for the numerical solution ofy″=f (x,y) , 1980 .

[7]  Xinyuan Wu,et al.  Trigonometrically fitted explicit Numerov-type method for periodic IVPs with two frequencies , 2008, Comput. Phys. Commun..

[8]  Liviu Gr. Ixaru,et al.  Truncation Errors in Exponential Fitting for Oscillatory Problems , 2006, SIAM J. Numer. Anal..

[9]  Beatrice Paternoster,et al.  A note on the capacitance matrix algorithm, substructuring, and mixed or Neumann boundary conditions , 1987 .

[10]  J. M. Franco Exponentially fitted explicit Runge-Kutta-Nyström methods , 2004 .

[11]  H. De Meyer,et al.  Exponentially fitted Runge-Kutta methods , 2000 .

[12]  Beatrice Paternoster,et al.  Two-step almost collocation methods for ordinary differential equations , 2009, Numerical Algorithms.

[13]  H. De Meyer,et al.  Exponentially-fitted explicit Runge–Kutta methods , 1999 .

[14]  Nguyen Huu Cong,et al.  Stability of collocation-based Runge-Kutta-Nyström methods , 1991 .

[15]  G. Vanden Berghe,et al.  Exponentially-fitted Numerov methods , 2007 .

[16]  John P. Coleman,et al.  Order conditions for a class of two‐step methods for y″ = f (x, y) , 2003 .

[17]  R. D'Ambrosio,et al.  A General Family of Two Step Collocation Methods for Ordinary Differential Equations , 2007 .

[18]  Ben P. Sommeijer,et al.  Diagonally implicit Runge-Kutta-Nystrm methods for oscillatory problems , 1989 .

[19]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[20]  Beatrice Paternoster,et al.  Two Step Runge-Kutta-Nyström Methods for Oscillatory Problems Based on Mixed Polynomials , 2003, International Conference on Computational Science.

[21]  Jack Dongarra,et al.  Computational Science — ICCS 2003 , 2003, Lecture Notes in Computer Science.

[22]  Beatrice Paternoster,et al.  Collocation-Based Two Step Runge-Kutta Methods for Ordinary Differential Equations , 2008, ICCSA.

[23]  Peter Albrecht,et al.  A new theoretical approach to Runge-Kutta methods , 1987 .

[24]  Beatrice Paternoster,et al.  Two-step hybrid collocation methods for y"=f(x, y) , 2009, Appl. Math. Lett..

[25]  Linda R. Petzold,et al.  Numerical solution of highly oscillatory ordinary differential equations , 1997, Acta Numerica.

[26]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[27]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[28]  Liviu Gr. Ixaru,et al.  P-stability and exponential-fitting methods for y″″ = f(x, y) , 1996 .

[29]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .