Application of Electrochemical Biosensors in Clinical Diagnosis

Analyses in the clinical area need quick and reliable analytical methods and devices. For this purpose, biosensors can be a suitable option, whereas they are constructed to be simple for use, specific for the target analyte, capable of continuous monitoring and giving quick results, potentially low‐costing and portable. In this article, we describe electrochemical biosensors developed for clinical diagnosis, namely for glucose, lactate, cholesterol, urea, creatinine, DNA, antigens, antibodies, and cancer markers assays. Chosen biosensors showed desirable sensitivity, selectivity, and potential for application on real samples. They are often designed to avoid interference with undesired components present in the monitored systems.

[1]  G. Marrazza,et al.  Disposable DNA electrochemical sensor for hybridization detection. , 1999, Biosensors & bioelectronics.

[2]  A. Killard,et al.  Creatinine biosensors: principles and designs. , 2000, Trends in biotechnology.

[3]  Jun Li,et al.  The fabrication and electrochemical characterization of carbon nanotube nanoelectrode arrays , 2004 .

[4]  M. Senda,et al.  Urea biosensor based on amperometric ammonium ion electrode , 1993 .

[5]  L. C. Clark,et al.  ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY , 1962 .

[6]  M. Velasco-Garcia,et al.  Optical biosensors for probing at the cellular level: a review of recent progress and future prospects. , 2009, Seminars in cell & developmental biology.

[7]  Garry A. Rechnitz,et al.  Biosensors: An overview , 1987 .

[8]  G J Kost,et al.  Oxygen effects on glucose meter measurements with glucose dehydrogenase- and oxidase-based test strips for point-of-care testing , 2001, Critical care medicine.

[9]  T. G. Drummond,et al.  Electrochemical DNA sensors , 2003, Nature Biotechnology.

[10]  J. Tkáč,et al.  Application of Enzyme Biosensors in Analysis of Food and Beverages , 2012, Food Analytical Methods.

[11]  Lee Yook Heng,et al.  A Urea Biosensor from Stacked Sol-Gel Films with Immobilized Nile Blue Chromoionophore and Urease Enzyme , 2007, Sensors.

[12]  Yang Li,et al.  Glucose biosensor based on the room-temperature phosphorescence of TiO2/SiO2 nanocomposite. , 2009, Biosensors & bioelectronics.

[13]  C. Steinem,et al.  Piezoelectric Mass-Sensing Devices as Biosensors-An Alternative to Optical Biosensors? , 2000, Angewandte Chemie.

[14]  Pankaj Vadgama,et al.  Diffusion restricting outer membranes for greatly extended linearity measurements with glucose oxidase enzyme electrodes , 1996 .

[15]  Bernard Nysten,et al.  Urea potentiometric enzymatic biosensor based on charged biopolymers and electrodeposited polyaniline. , 2011, Biosensors & bioelectronics.

[16]  Development of Amperometric Lactate Biosensor Modified with Pt-black Nanoparticles for Rapid Assay , 2009 .

[17]  C. Alonso,et al.  Nanostructured rough gold electrodes for the development of lactate oxidase-based biosensors. , 2010, Biosensors & bioelectronics.

[18]  Bernard Bennetau,et al.  A new immunosensor for breast cancer cell detection using antibody-coated long alkylsilane self-assembled monolayers in a parallel plate flow chamber. , 2008, Biosensors & bioelectronics.

[19]  Fwu-Shan Sheu,et al.  Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes , 2004 .

[20]  M. Romero,et al.  Amperometric biosensor for direct blood lactate detection. , 2010, Analytical chemistry.

[21]  R. Yuan,et al.  A novel, label-free immunosensor for the detection of alpha-fetoprotein using functionalised gold nanoparticles. , 2009, Clinical biochemistry.

[22]  M. Romero,et al.  Design and optimization of a lactate amperometric biosensor based on lactate oxidase cross-linked with polymeric matrixes , 2008 .

[23]  R. B. Rakhi,et al.  A cholesterol biosensor based on gold nanoparticles decorated functionalized graphene nanoplatelets , 2011 .

[24]  T. Vo‐Dinh,et al.  Biosensors and biochips: advances in biological and medical diagnostics , 2000, Fresenius' journal of analytical chemistry.

[25]  T. Godjevargova,et al.  Immobilization of urease on nanostructured polymer membrane and preparation of urea amperometric biosensor. , 2011, International journal of biological macromolecules.

[26]  B. D. Malhotra,et al.  Mediated biosensors. , 2002, Biosensors & bioelectronics.

[27]  Srinivasan,et al.  Characterization of gelatin‐immobilized pigeonpea urease and preparation of a new urea biosensor , 2001, Biotechnology and applied biochemistry.

[28]  Baoyan Wu,et al.  Development of an amperometric l-lactate biosensor based on l-lactate oxidase immobilized through silica sol–gel film on multi-walled carbon nanotubes/platinum nanoparticle modified glassy carbon electrode , 2008 .

[29]  Ying Zhang,et al.  Amperometric immunosensor based on toluidine blue/nano-Au through electrostatic interaction for determination of carcinoembryonic antigen. , 2006, Journal of biotechnology.

[30]  Jing Li,et al.  A highly-sensitive l-lactate biosensor based on sol-gel film combined with multi-walled carbon nanotubes (MWCNTs) modified electrode , 2007 .

[31]  Lauro T. Kubota,et al.  Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola Blue coimmobilized on multi-wall carbon-nanotube , 2007 .

[32]  María Soledad Belluzo,et al.  Assembling Amperometric Biosensors for Clinical Diagnostics , 2008, Sensors.

[33]  I. Tothill Biosensors for cancer markers diagnosis. , 2009, Seminars in cell & developmental biology.

[34]  Rahel Girmai Bokretsion,et al.  Simultaneous Detection of Creatine and Creatinine using a Sequential Injection Analysis/Biosensor System , 2006, Preparative biochemistry & biotechnology.

[35]  P. He,et al.  Applications of Carbon Nanotubes in Electrochemical DNA Biosensors , 2005 .

[36]  G Marrazza,et al.  DNA electrochemical biosensors , 2001, Fresenius' journal of analytical chemistry.

[37]  J. Tkáč,et al.  Amperometric urea biosensor based on urease and electropolymerized toluidine blue dye as a pH-sensitive redox probe. , 2002, Bioelectrochemistry.

[38]  H. Schmidt,et al.  Determination of the substrates of dehydrogenases in biological material in flow-injection systems with electrocatalytic NADH oxidation , 1984 .

[39]  Rahul Singhal,et al.  Development of a lactate biosensor based on conducting copolymer bound lactate oxidase , 2005 .

[40]  Eun-Hyung Yoo,et al.  Correction: Yoo, E.H., et al. Glucose Biosensors: An Overview of Use in Clinical Practice. Sensors 2010, 10, 4558–4576 , 2010, Sensors (Basel, Switzerland).

[41]  A. Topkar,et al.  Development of potentiometric urea biosensor based on urease immobilized in PVA-PAA composite matrix for estimation of blood urea nitrogen (BUN). , 2008, Journal of biochemical and biophysical methods.

[42]  Magnus Willander,et al.  Potentiometric cholesterol biosensor based on ZnO nanorods chemically grown on Ag wire , 2010 .

[43]  Rahul Singhal,et al.  Immobilization of urease on poly(N-vinyl carbazole)/stearic acid Langmuir-Blodgett films for application to urea biosensor. , 2002, Biosensors & bioelectronics.

[44]  A. Turner,et al.  Home blood glucose biosensors: a commercial perspective. , 2005, Biosensors & bioelectronics.

[45]  Y. Chai,et al.  A novel immunosensor based on gold nanoparticles and poly-(2,6-pyridinediamine)/multiwall carbon nanotubes composite for immunoassay of human chorionic gonadotrophin , 2010 .

[46]  E. García-Ruiz,et al.  Amperometric cholesterol biosensors based on the electropolymerization of pyrrole and the electrocatalytic effect of Prussian-Blue layers helped with self-assembled monolayers. , 2004, Talanta.

[47]  Jilin Yan,et al.  An exercise degree monitoring biosensor based on electrochemiluminescent detection of lactate in sweat , 2010 .

[48]  Jun Liu,et al.  Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. , 2009, Talanta.

[49]  S. Miertus,et al.  Urea biosensor based on amperometric pH-sensing with hematein as a pH-sensitive redox mediator. , 2001, Talanta.

[50]  G. Rivas,et al.  Glucose biosensing at carbon paste electrodes containing iron nanoparticles , 2010 .

[51]  W. Shih,et al.  Development of disposable lipid biosensor for the determination of total cholesterol. , 2009, Biosensors & bioelectronics.

[52]  Chang Ming Li,et al.  Highly sensitive lactate biosensor by engineering chitosan/PVI-Os/CNT/LOD network nanocomposite. , 2007, Biosensors & bioelectronics.

[53]  L. Fonseca,et al.  Trends in DNA biosensors , 2008, Talanta.

[54]  A. Araújo,et al.  Application of lactate amperometric sol-gel biosensor to sequential injection determination of L-lactate. , 2007, Journal of pharmaceutical and biomedical analysis.

[55]  C P Price,et al.  Immunosensors: technology and opportunities in laboratory medicine. , 1996, Clinical chemistry.

[56]  B. D. Malhotra,et al.  Coimmobilization of urease and glutamate dehydrogenase in electrochemically prepared polypyrrole-polyvinyl sulfonate films , 2001, Applied biochemistry and biotechnology.

[57]  Y. Chang,et al.  Carbon nanotube DNA sensor and sensing mechanism. , 2006, Nano letters.

[58]  M. Cooper Label-free screening of bio-molecular interactions , 2003, Analytical and bioanalytical chemistry.

[59]  R. Nakamura,et al.  Future of biosensors in the clinical laboratory , 1988 .

[60]  L. Capitán-Vallvey,et al.  Disposable electrochemiluminescent biosensor for lactate determination in saliva. , 2009, The Analyst.

[61]  Bansi D. Malhotra,et al.  Recent developments in urea biosensors , 2009 .

[62]  Mehmet Ozsoz,et al.  Electrochemical DNA Biosensors Based on DNA‐Drug Interactions , 2002 .

[63]  You Wang,et al.  A pyrrole quinoline quinone glucose dehydrogenase biosensor based on screen-printed carbon paste electrodes modified by carbon nanotubes , 2008 .

[64]  Hui Xu,et al.  Potential diagnostic applications of biosensors: current and future directions , 2006, International journal of nanomedicine.

[65]  Katherine J Odenthal,et al.  An introduction to electrochemical DNA biosensors. , 2007, The Analyst.

[66]  Song Zhang,et al.  Protein chips and nanomaterials for application in tumor marker immunoassays. , 2009, Biosensors & bioelectronics.

[67]  Avraham Rasooly,et al.  Development of biosensors for cancer clinical testing. , 2006, Biosensors & bioelectronics.

[68]  A. Ramanavičius,et al.  Amperometric biosensor for the determination of creatine , 2007, Analytical and bioanalytical chemistry.

[69]  I. Bahar,et al.  A stable three enzyme creatinine biosensor. 2. Analysis of the impact of silver ions on creatine amidinohydrolase. , 2005, Acta biomaterialia.

[70]  Peter T Kissinger,et al.  Biosensors-a perspective. , 2005, Biosensors & bioelectronics.

[71]  Marco Mascini,et al.  Electrochemical DNA biosensor for the detection of TT and Hepatitis B virus from PCR amplified real samples by using methylene blue. , 2002, Talanta.

[72]  Joseph Wang,et al.  Point-of-care biosensor systems for cancer diagnostics/prognostics. , 2006, Biosensors & bioelectronics.

[73]  Jamie Hu,et al.  The evolution of commercialized glucose sensors in China. , 2009, Biosensors & bioelectronics.

[74]  Minghui Yang,et al.  Label-free immunosensor based on gold nanoparticle silver enhancement. , 2009, Analytical biochemistry.

[75]  Reinhard Niessner,et al.  Selection of hapten structures for indirect immunosensor arrays , 1999 .

[76]  S. Khokhar,et al.  Electrochemical creatinine biosensors. , 2008, Analytical chemistry.

[77]  M. Vaseem,et al.  Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles , 2009 .

[78]  P. He,et al.  Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection , 2003, Analytical and bioanalytical chemistry.

[79]  Robert Koncki,et al.  Creatinine biosensor based on ammonium ion selective electrode and its application in flow-injection analysis. , 2004, Talanta.

[80]  Bansi D. Malhotra,et al.  Biosensors for clinical diagnostics industry , 2003 .

[81]  A. Safavi,et al.  Electrodeposition of gold-platinum alloy nanoparticles on ionic liquid-chitosan composite film and its application in fabricating an amperometric cholesterol biosensor. , 2011, Biosensors & bioelectronics.

[82]  Kenji Kano,et al.  Novel FAD-Dependent Glucose Dehydrogenase for a Dioxygen-Insensitive Glucose Biosensor , 2006, Bioscience, biotechnology, and biochemistry.

[83]  M. Suchard,et al.  Use of Electrochemical DNA Biosensors for Rapid Molecular Identification of Uropathogens in Clinical Urine Specimens , 2006, Journal of Clinical Microbiology.

[84]  I. Ledingham,et al.  The relative prognostic value of lactate and haemodynamic measurements in early shock , 1983, Anaesthesia.

[85]  Eun-Hyung Yoo,et al.  Glucose Biosensors: An Overview of Use in Clinical Practice , 2010, Sensors.

[86]  Bansi D Malhotra,et al.  Recent advances in cholesterol biosensor. , 2008, Biosensors & bioelectronics.

[87]  Paolo G. V. Martini,et al.  Overview of Electrochemical DNA Biosensors: New Approaches to Detect the Expression of Life , 2009, Sensors.

[88]  Kagan Kerman,et al.  Recent trends in electrochemical DNA biosensor technology , 2004 .

[89]  Muhammad J A Shiddiky,et al.  A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film. , 2009, Analytical biochemistry.

[90]  Aiping Zhu,et al.  An electrochemical impedimetric immunosensor for label-free detection of Campylobacter jejuni in diarrhea patients' stool based on O-carboxymethylchitosan surface modified Fe3O4 nanoparticles. , 2010, Biosensors & bioelectronics.

[91]  J. Madura,et al.  A stable three-enzyme creatinine biosensor. 1. Impact of structure, function and environment on PEGylated and immobilized sarcosine oxidase. , 2005, Acta biomaterialia.

[92]  Y. Tsai,et al.  Amperometric cholesterol biosensors based on carbon nanotube–chitosan–platinum–cholesterol oxidase nanobiocomposite , 2008 .

[93]  J. Zen,et al.  Superior long-term stability of a glucose biosensor based on inserted barrel plating gold electrodes. , 2009, Biosensors & bioelectronics.

[94]  M. Rahman,et al.  Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures. , 2009, Talanta.

[95]  A. Russell,et al.  A stable three-enzyme creatinine biosensor. 3. Immobilization of creatinine amidohydrolase and sensor development. , 2005, Acta biomaterialia.

[96]  C. Fang,et al.  A disposable amperometric biosensor for determining total cholesterol in whole blood , 2011 .

[97]  E. López-Cabarcos,et al.  Amperometric glucose biosensor based on biocompatible poly(dimethylaminoethyl) methacrylate microparticles. , 2010, Talanta.

[98]  Ş. Pekyardımcı,et al.  Urea Biosensors Based on PVC Membrane Containing Palmitic Acid , 2005, Artificial cells, blood substitutes, and immobilization biotechnology.

[99]  J. Vincent,et al.  Serial blood lactate levels can predict the development of multiple organ failure following septic shock. , 1996, American journal of surgery.

[100]  J. Buchert A xylose-oxidizing membrane-bound aldose dehydrogenase of Gluconobacter oxydans ATCC 621 , 1991 .

[101]  Liliana Serna Cock,et al.  Use of Enzymatic Biosensors as Quality Indices: A Synopsis of Present and Future Trends in The Food Industry , 2009 .

[102]  Petr Skládal,et al.  Advances in electrochemical immunosensors , 1997 .