Genetics of proteolysis in Escherichia coli*.

Over the last ten years it has become increasingly apparent that turnover of particular proteins, under specific conditions, can play as central a role as the transcriptional and translational regulatory mechanisms. This review summarizes our current knowledge of this particular role of proteases responsible for the initial cleavages in most of these interesting degradative processes

[1]  J. Beckwith,et al.  An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[2]  B. Bachmann Linkage map of Escherichia coli K-12, edition 7 , 1983, Microbiological reviews.

[3]  J. Lutkenhaus,et al.  Reversibility of SOS-associated division inhibition in Escherichia coli , 1986, Journal of bacteriology.

[4]  R. D'ari,et al.  An inducible DNA replication–cell division coupling mechanism in E. coli , 1981, Nature.

[5]  H. Echols,et al.  A class of Escherichia coli proteins controlled by the hflA locus. , 1987, Journal of molecular biology.

[6]  J. W. Little,et al.  The SOS regulatory system: control of its state by the level of RecA protease. , 1983, Journal of molecular biology.

[7]  C. Georgopoulos,et al.  Identification, characterization, and mapping of the Escherichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures , 1989, Journal of bacteriology.

[8]  S. Gottesman,et al.  Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes , 1985, Journal of bacteriology.

[9]  A. Goldberg,et al.  Protease La, the lon gene product, cleaves specific fluorogenic peptides in an ATP-dependent reaction. , 1985, The Journal of biological chemistry.

[10]  A. Grossman,et al.  Sigma 32 synthesis can regulate the synthesis of heat shock proteins in Escherichia coli. , 1987, Genes & development.

[11]  R. D'ari,et al.  DNA replication and indirect induction of the SOS response in Escherichia coli. , 1982, Biochimie.

[12]  Mark L. Pearson,et al.  Protein degradation in E. coli: The ion mutation and bacteriophage lambda N and cll protein stability , 1981, Cell.

[13]  B. Zehnbauer,et al.  Identification and purification of the Lon+ (capR+) gene product, a DNA-binding protein. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[14]  S. Cole,et al.  Evolution of the enterobacterial sulA gene: a component of the SOS system encoding an inhibitor of cell division. , 1987, Gene.

[15]  R. Gayda,et al.  Second-site mutations in capR (lon) strains of Escherichia coli K-12 that prevent radiation sensitivity and allow bacteriophage lambda to lysogenize , 1976, Journal of bacteriology.

[16]  J. Beckwith,et al.  Characterization of degP, a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature , 1989, Journal of bacteriology.

[17]  C. Gross,et al.  Escherichia coli heat shock gene mutants are defective in proteolysis. , 1988, Genes & development.

[18]  C. Reich,et al.  Instability of transposase activity: Evidence from bacteriophage Mu DNA replication , 1982, Cell.

[19]  H. Echols,et al.  Control of phage λ development by stability and synthesis of cll protein: Role of the viral clll and host hflA, himA and himD genes , 1982, Cell.

[20]  A. Grossman,et al.  Mutations in the Lon gene of E. coli K12 phenotypically suppress a mutation in the sigma subunit of RNA polymerase , 1983, Cell.

[21]  W. Dreyer,et al.  Regulatory region of the heat shock-inducible capR (lon) gene: DNA and protein sequences , 1985, Journal of bacteriology.

[22]  I. Holland,et al.  Role of the SulB (FtsZ) protein in division inhibition during the SOS response in Escherichia coli: FtsZ stabilizes the inhibitor SulA in maxicells. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[23]  E. Witkin Genetics of Resistance to Radiation in ESCHERICHIA COLI. , 1947, Genetics.

[24]  Frederick M. Ausubel,et al.  Conserved domains in bacterial regulatory proteins that respond to environmental stimuli , 1987, Cell.

[25]  A. Goldberg Degradation of Abnormal Proteins in Escherichia coli , 1972 .

[26]  C. L. Truitt,et al.  Interaction of host and viral regulatory mechanisms: effect of the ion cell division defect on regulation of repression by bacteriophage lambda. , 1976, Journal of molecular biology.

[27]  J. W. Little,et al.  Autodigestion of lexA and phage lambda repressors. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Suzuki,et al.  Molecular cloning and sequencing of the sppA gene and characterization of the encoded protease IV, a signal peptide peptidase, of Escherichia coli. , 1986, The Journal of biological chemistry.

[29]  A. Goldberg,et al.  Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. Goldberg,et al.  Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. , 1986, Science.

[31]  A. Varshavsky,et al.  The degradation signal in a short-lived protein , 1989, Cell.

[32]  D. Mount,et al.  The SOS regulatory system of Escherichia coli , 1982, Cell.

[33]  D. Zipser,et al.  Mutation blocking the specific degradation of reinitiation polypeptides in E. coli , 1975, Nature.

[34]  I. Herskowitz,et al.  Identification of polypeptides encoded by an Escherichia coli locus (hflA) that governs the lysis-lysogeny decision of bacteriophage lambda , 1987, Journal of bacteriology.

[35]  J. W. Little,et al.  Lysine-156 and serine-119 are required for LexA repressor cleavage: a possible mechanism. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Gill,et al.  Cytoplasmic membrane fraction that promotes septation in an Escherichia coli lon mutant , 1981, Journal of bacteriology.

[37]  A. Hershko,et al.  Specificity of binding of NH2-terminal residue of proteins to ubiquitin-protein ligase. Use of amino acid derivatives to characterize specific binding sites. , 1988, The Journal of biological chemistry.

[38]  E. Moxon,et al.  Capsulation and gene copy number at the cap locus of Haemophilus influenzae type b , 1988, Journal of bacteriology.

[39]  N. Kleckner,et al.  Tn10 transposition promotes RecA-dependent induction of a lambda prophage. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[40]  A. Goldberg,et al.  Subcellular distribution of various proteases in Escherichia coli , 1982, Journal of bacteriology.

[41]  A. Goldberg,et al.  Heat shock regulatory gene htpR influences rates of protein degradation and expression of the lon gene in Escherichia coli. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[42]  H. Shinagawa,et al.  RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[43]  D. Zipser,et al.  Deg phenotype of Escherichia coli lon mutants , 1978, Journal of bacteriology.

[44]  S. Gottesman,et al.  Cell-division control in Escherichia coli: specific induction of the SOS function SfiA protein is sufficient to block septation. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[45]  J. Battista,et al.  RecA-mediated cleavage activates UmuD for mutagenesis: mechanistic relationship between transcriptional derepression and posttranslational activation. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. R. Kushner,et al.  Physical characterization of the cloned protease III gene from Escherichia coli K-12 , 1985, Journal of bacteriology.

[47]  D. Ohman,et al.  Cloning of genes from mucoid Pseudomonas aeruginosa which control spontaneous conversion to the alginate production phenotype , 1988, Journal of bacteriology.

[48]  S. Gottesman,et al.  lon transcriptional regulation of genes necessary for capsular polysaccharide synthesis in Escherichia coli K-12 , 1984, Journal of bacteriology.

[49]  A. Grossman,et al.  The htpR gene product of E. coli is a sigma factor for heat-shock promoters , 1984, Cell.

[50]  J. Roberts,et al.  Proteolytic cleavage of bacteriophage lambda repressor in induction. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[51]  A. Goldberg,et al.  DNA stimulates ATP-dependent proteolysis and protein-dependent ATPase activity of protease La from Escherichia coli. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[52]  J. Lutkenhaus,et al.  Overproduction of FtsZ induces minicell formation in E. coli , 1985, Cell.

[53]  S. Gottesman,et al.  The two-component, ATP-dependent Clp protease of Escherichia coli. Purification, cloning, and mutational analysis of the ATP-binding component. , 1988, The Journal of biological chemistry.

[54]  Jeffrey W. Roberts,et al.  Function of nucleoside triphosphate and polynucleotide in Escherichia coli recA protein-directed cleavage of phage lambda repressor. , 1981, The Journal of biological chemistry.

[55]  D. Zipser,et al.  Isolation and characterization of mutations in the structural gene for protease III (ptr) , 1979, Journal of bacteriology.

[56]  C. Georgopoulos,et al.  Escherichia coli DnaK and GrpE heat shock proteins interact both in vivo and in vitro , 1989, Journal of bacteriology.

[57]  D. Mount The genetics of protein degradation in bacteria. , 1980, Annual review of genetics.

[58]  M. Maurizi Degradation in vitro of bacteriophage lambda N protein by Lon protease from Escherichia coli. , 1987, The Journal of biological chemistry.

[59]  A. Goldberg,et al.  Protein substrates activate the ATP-dependent protease La by promoting nucleotide binding and release of bound ADP. , 1987, The Journal of biological chemistry.

[60]  R. D'ari,et al.  Further characterization of sfiA and sfiB mutations in Escherichia coli , 1980, Journal of bacteriology.

[61]  R. Mosteller,et al.  Metabolism of individual proteins in exponentially growing Escherichia coli. , 1980, The Journal of biological chemistry.

[62]  K. Isono,et al.  The physical map of the whole E. coli chromosome: Application of a new strategy for rapid analysis and sorting of a large genomic library , 1987, Cell.

[63]  J U Bowie,et al.  Identification of C-terminal extensions that protect proteins from intracellular proteolysis. , 1989, The Journal of biological chemistry.

[64]  S. Gottesman,et al.  Capsule synthesis in Escherichia coli K-12 is regulated by proteolysis , 1987, Journal of bacteriology.

[65]  A. Grossman,et al.  A gene regulating the heat shock response in Escherichia coli also affects proteolysis. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[66]  A. Goldberg,et al.  Binding of nucleotides to the ATP-dependent protease La from Escherichia coli. , 1987, The Journal of biological chemistry.

[67]  J. Dunn,et al.  ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification , 1988, Journal of bacteriology.

[68]  D. Court,et al.  Induction of the heat shock response of E. coli through stabilization of sigma 32 by the phage lambda cIII protein. , 1987, Genes & development.

[69]  R. Moon,et al.  Assembly and topogenesis of the spectrin-based membrane skeleton in erythroid development , 1984, Cell.

[70]  J. Lutkenhaus Coupling of DNA replication and cell division: sulB is an allele of ftsZ , 1983, Journal of bacteriology.

[71]  S. Gottesman,et al.  Alp, a suppressor of lon protease mutants in Escherichia coli , 1989, Journal of bacteriology.