Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control

Abstract This paper discusses the synchronization and anti-synchronization of new uncertain fractional-order unified chaotic systems (UFOUCS). Based on the idea of active control, a novel active pinning control strategy is presented, which only needs a state of new UFOUCS. The proposed controller can achieve synchronization between a response system and a drive system, and ensure the synchronized robust stability of new UFOUCS. Numerical simulations of new UFOUCS show that the controller can make fractional-order unified chaotic systems (FOUCS) achieve synchronization or anti-synchronization in a quite short period and both are of good robust stability.

[1]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[2]  Xiaofeng Liao,et al.  Impulsive synchronization of chaotic systems. , 2005, Chaos.

[3]  Shihua Chen,et al.  Impulsive control and synchronization of unified chaotic system , 2004 .

[4]  Shihua Chen,et al.  Synchronizing strict-feedback and general strict-feedback chaotic systems via a single controller , 2004 .

[5]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[6]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[7]  Wenwu Yu,et al.  On pinning synchronization of complex dynamical networks , 2009, Autom..

[8]  I. Podlubny Fractional differential equations , 1998 .

[9]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[10]  Zhi-Hong Guan,et al.  Adaptive synchronization for Chen chaotic system with fully unknown parameters , 2004 .

[11]  Guohui Li,et al.  Generalized projective synchronization of two chaotic systems by using active control , 2006 .

[12]  Jianliang Tang,et al.  Controlling Chen’s chaotic attractor using two different techniques based on parameter identification ☆ , 2007 .

[13]  Guo-Hui Li,et al.  Generalized projective synchronization between two different chaotic systems using active backstepping control , 2006 .

[14]  S. Čelikovský,et al.  Control systems: from linear analysis to synthesis of chaos , 1996 .

[15]  Zhengzhi Han,et al.  Controlling and synchronizing chaotic Genesio system via nonlinear feedback control , 2003 .

[16]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[17]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[18]  Jinde Cao,et al.  Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters. , 2005, Chaos.

[19]  Lu Jinhu,et al.  Controlling the Chen attractor using linear feedback based on parameter identification , 2002 .

[20]  Celso Grebogi,et al.  Erratum: ``Controlling chaos'' [Phys. Rev. Lett. 64, 1196 (1990)] , 1990 .