Effects of Cr2O3 addition on the phase, mechanical properties, and microstructure of zirconia-toughened alumina added with TiO2 (ZTA–TiO2) ceramic composite

[1]  E. C. Abdullah,et al.  Effects of TiO2 addition on the phase, mechanical properties, and microstructure of zirconia-toughened alumina ceramic composite , 2015 .

[2]  N. A. Rejab,et al.  Effects of MgO addition on the phase, mechanical properties, and microstructure of zirconia-toughened alumina added with CeO2 (ZTA–CeO2) ceramic composite , 2014 .

[3]  M. F. Ain,et al.  Studies on the formation of yttrium iron garnet (YIG) through stoichiometry modification prepared by conventional solid-state method , 2013 .

[4]  T. Troczynski,et al.  The effect of nano-Cr2O3 on solid-solution assisted sintering of MgO refractories , 2012 .

[5]  M. Ratnam,et al.  Effects of Cr2O3 addition on the mechanical properties, microstructure and wear performance of zirconia-toughened-alumina (ZTA) cutting inserts , 2012 .

[6]  Jow-Lay Huang,et al.  Mechanical properties of Al2O3–Cr2O3/Cr3C2 nanocomposite fabricated by spark plasma sintering , 2012 .

[7]  M. H. Paydar,et al.  Microwave assisted solution combustion synthesis of alumina–zirconia, ZTA, nanocomposite powder , 2011 .

[8]  J. Aarik,et al.  Structural characterization of TiO2–Cr2O3 nanolaminates grown by atomic layer deposition , 2010 .

[9]  W. Buggakupta,et al.  Hardness and fracture toughness of alumina-based particulate composites with zirconia and strontia additives , 2010 .

[10]  M. Ratnam,et al.  Effect of Al2O3/YSZ microstructures on wear and mechanical properties of cutting inserts , 2009 .

[11]  A. Yamaguchi,et al.  Sintering of Al2O3-Cr2O3 powder prepared by sol-gel process (特集 セラミック材料) , 2007 .

[12]  A. Brillante,et al.  Effect of the composition and sintering process on mechanical properties and residual stresses in zirconia-alumina composites , 2005 .

[13]  Bikramjit Basu,et al.  Toughening of yttria-stabilised tetragonal zirconia ceramics , 2005 .

[14]  S. Kanzaki,et al.  Mechanical properties of textured alumina made by high-temperature deformation , 2005 .

[15]  J. Vleugels,et al.  Toughness tailoring of yttria-doped zirconia ceramics , 2004 .

[16]  J. Vleugels,et al.  ZrO2–Al2O3 composites with tailored toughness , 2004 .

[17]  M. Anglada,et al.  Fracture toughness of alumina and ZTA ceramics: microstructural coarsening effects , 2003 .

[18]  A. Celli,et al.  Fractal analysis of cracks in alumina–zirconia composites , 2003 .

[19]  M. González,et al.  C-diffusion during hot press in the Al2O3-Cr2O3 system , 2003 .

[20]  L. Gao,et al.  Influence of Cr2O3 on the sintering, microstructure and mechanical performances of ZTM-Al2O3 , 2001 .

[21]  Hyoun‐Ee Kim,et al.  Effect of Cr2O3 addition on microstructural evolution and mechanical properties of Al2O3 , 2000 .

[22]  J. Chevalier,et al.  Crack propagation and fatigue in zirconia-based composites , 1999 .

[23]  W. Smith Foundations of Materials Science and Engineering , 1993 .

[24]  M Heller,et al.  Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia. , 1989, Journal of biomedical materials research.

[25]  T. Arahori,et al.  Microstructure and mechanical properties of Al2O3-Cr2O3-ZrO2 composites , 1988 .

[26]  K. Niihara,et al.  A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics , 1983 .