Nearly monodispersed In(OH)3 hierarchical nanospheres and nanocubes: tunable ligand-assisted synthesis and their conversion into hierarchical In2O3 for gas sensing

In(OH)3 nanomaterials with different morphologies or hierarchical structures, such as nanoparticles, monodispersed hierarchical nanocubes and nanospheres, have been successfully synthesized via a ligand-assisted aqueous process. The shape and size of these as-prepared architectures can be tuned effectively by controlling the reaction conditions, such as the molar ratio of ligand/In3+ and different ligands. Further studies reveal that both Na3cit and urea are necessary for the formation of monodispersed hierarchical nanospheres and nanocubes. Furthermore, In2O3 nanoparticles and monodispersed hierarchical nanocubes and nanospheres with well-defined morphologies of the precursors can be also obtained by annealing the corresponding In(OH)3 samples. The gas sensing properties of the as-prepared In2O3 samples demonstrate that hierarchical In2O3 architectures exhibit a superior response to ethanol gas, and the hierarchical In2O3 nanocubes have excellent selectivity and sensitivity. Further more, XPS spectra and N2 adsorption–desorption isotherms achieve a deeper understanding of the effects of the final product morphologies on their gas sensing properties.

[1]  John Wang,et al.  Manipulating the Formation of NH4TiOF3 Mesocrystals: Effects of Temperature, Surfactant, and pH , 2012 .

[2]  Cen Wang,et al.  Ultrathin SnO2 Nanosheets: Oriented Attachment Mechanism, Nonstoichiometric Defects, and Enhanced Lithium-Ion Battery Performances , 2012 .

[3]  Nicolae Barsan,et al.  Neodymium Dioxide Carbonate as a Sensing Layer for Chemoresistive CO2 Sensing , 2009 .

[4]  C. Du,et al.  Preparation of PrxZn1 − xO nanopowder with UV–visible light response , 2009 .

[5]  Hao Jiang,et al.  Hydrothermal synthesis of novel In(2)O(3) microspheres for gas sensors. , 2009, Chemical communications.

[6]  Junling Lu,et al.  Surface Acidity and Properties of TiO2/SiO2 Catalysts Prepared by Atomic Layer Deposition: UV−visible Diffuse Reflectance, DRIFTS, and Visible Raman Spectroscopy Studies , 2009 .

[7]  Jinyun Liu,et al.  Shape- and phase-controlled synthesis of In2O3 with various morphologies and their gas-sensing properties , 2009 .

[8]  Zhi-xuan Cheng,et al.  Indium Oxide with Novel Morphology: Synthesis and Application in C2H5OH Gas Sensing , 2009 .

[9]  Hao Zhang,et al.  Sodium-Citrate-Assisted Synthesis of Aqueous CdTe Nanocrystals: Giving New Insight into the Effect of Ligand Shell , 2009 .

[10]  Xiangyang Ma,et al.  Homogeneous coating of Au and SnO2 nanocrystals on carbon nanotubes via layer-by-layer assembly: a new ternary hybrid for a room-temperature CO gas sensor. , 2008, Chemical communications.

[11]  Liyong Chen,et al.  Biomolecule-Assisted Synthesis of In(OH)3 Hollow Spherical Nanostructures Constructed with Well-Aligned Nanocubes and Their Conversion into C-In2O3 , 2008 .

[12]  Fan Yang,et al.  Self-Assembled 3D Microflowery In(OH)3 Architecture and Its Conversion to In2O3 , 2008 .

[13]  Shanshan Huang,et al.  Shape-Controllable Synthesis and Upconversion Properties of Lutetium Fluoride (Doped with Yb3+/Er3+) Microcrystals by Hydrothermal Process , 2008 .

[14]  G. Neri,et al.  Tungsten Oxide Nanowires-Based Ammonia Gas Sensors , 2008 .

[15]  J. H. Lee,et al.  Growth mechanism of In(OH)3 nanocubes during hydrothermal reaction , 2008 .

[16]  Ning Wang,et al.  Facile One-Pot Solution Phase Synthesis of SnO2 Nanotubes , 2008 .

[17]  Yong Jia,et al.  Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres , 2008, Nanotechnology.

[18]  Markus Niederberger,et al.  Surfactant-free nonaqueous synthesis of metal oxide nanostructures. , 2008, Angewandte Chemie.

[19]  Imtiaz S. Mulla,et al.  Fe-doped SnO2 nanomaterial : A low temperature hydrogen sulfide gas sensor , 2008 .

[20]  Kun-Hong Lee,et al.  Synthesis of Hierarchical Carbon Nanostructures Functionalized with Metal Nanoparticles , 2008 .

[21]  U. Kreibig,et al.  Energy filtering TEM analysis of nanoelectronic device structures: fast and efficient way to assess chemical microstructures , 2008 .

[22]  Yinjuan Xie,et al.  Surfactant-Assisted Etching in Biomimetic Mineralization of Ferric Phosphate , 2008 .

[23]  Sung-En Lin,et al.  Synthesis and Investigation of Submicrometer Spherical Indium Oxide Particles , 2008 .

[24]  Jiaqiang Xu,et al.  Ethanol sensor based on hexagonal indium oxide nanorods prepared by solvothermal methods , 2008 .

[25]  Weizhi Wang,et al.  Tunable Synthesis of Various Hierarchical Structures of In(OH)3 and In2O3 Assembled by Nanocubes , 2008 .

[26]  Fan Yang,et al.  Template-Free, Surfactantless Route to Fabricate In(OH)3 Monocrystalline Nanoarchitectures and Their Conversion to In2O3 , 2008 .

[27]  Fan Zuo,et al.  L-Cysteine-Assisted Synthesis of PbS Nanocube-Based Pagoda-like Hierarchical Architectures , 2008 .

[28]  Jiaqiang Xu,et al.  Tuning the phase and morphology of In2O3 nanocrystals via simple solution routes , 2007 .

[29]  Lisha Zhang,et al.  Bi2WO6 nano- and microstructures: shape control and associated visible-light-driven photocatalytic activities. , 2007, Small.

[30]  Pietro Siciliano,et al.  Nanocrystals as Very Active Interfaces: Ultrasensitive Room-Temperature Ozone Sensors with In2O3 Nanocrystals Prepared by a Low-Temperature Sol−Gel Process in a Coordinating Environment , 2007 .

[31]  Yuanyuan Li,et al.  Hydrothermal Synthesis of Bi 2 WO 6 Uniform Hierarchical Microspheres , 2007 .

[32]  N. Du,et al.  Porous Indium Oxide Nanotubes: Layer‐by‐Layer Assembly on Carbon‐Nanotube Templates and Application for Room‐Temperature NH3 Gas Sensors , 2007 .

[33]  Qing Peng,et al.  Indium hydroxides, oxyhydroxides, and oxides nanocrystals series. , 2007, Inorganic chemistry.

[34]  Zhi-xuan Cheng,et al.  A new route for preparing corundum-type In2O3 nanorods used as gas-sensing materials , 2007 .

[35]  N. Bârsan,et al.  Metal oxide-based gas sensor research: How to? , 2007 .

[36]  Jun Lin,et al.  In(OH)3 and In2O3 nanorod bundles and spheres: microemulsion-mediated hydrothermal synthesis and luminescence properties. , 2006, Inorganic chemistry.

[37]  Yujin Chen,et al.  Reduced-temperature ethanol sensing characteristics of flower-like ZnO nanorods synthesized by a sonochemical method , 2006, Nanotechnology.

[38]  Guangzhao Zhang,et al.  In2O3 hollow microspheres: synthesis from designed In(OH)3 precursors and applications in gas sensors and photocatalysis. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[39]  Zhong Lin Wang,et al.  Hierarchical structured nanohelices of ZnS. , 2006, Angewandte Chemie.

[40]  N. Pradhan,et al.  Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis. , 2006, Journal of the American Chemical Society.

[41]  Hua Chun Zeng,et al.  Fabrications of hollow nanocubes of Cu(2)O and Cu via reductive self-assembly of CuO nanocrystals. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[42]  Markus Niederberger,et al.  Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. , 2006, Physical chemistry chemical physics : PCCP.

[43]  Yueping Fang,et al.  Hollow and tin-filled nanotubes of single-crystalline in OH3 grown by a solution-liquid-solid-solid route. , 2006, Angewandte Chemie.

[44]  Sung‐Yool Choi,et al.  Ambient pressure syntheses of size-controlled corundum-type In2O3 nanocubes. , 2006, Journal of the American Chemical Society.

[45]  Jiaqiang Xu,et al.  Hydrothermal synthesis of In2O3 for detecting H2S in air , 2006 .

[46]  Chenglin Yan,et al.  Morphosynthesis of hierarchical hydrozincite with tunable surface architectures and hollow zinc oxide. , 2006, The journal of physical chemistry. B.

[47]  E. Comini Metal oxide nano-crystals for gas sensing. , 2006, Analytica chimica acta.

[48]  L. Gao,et al.  Anisotropic Growth of In(OH)3 Nanocubes to Nanorods and Nanosheets via a Solution-Based Seed Method , 2006 .

[49]  L. Luo,et al.  High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[50]  Qing Peng,et al.  High ethanol sensitive SnO2 microspheres , 2006 .

[51]  Qing Peng,et al.  Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors , 2006 .

[52]  Tongtong Wang,et al.  Contact-controlled sensing properties of flowerlike ZnO nanostructures , 2005 .

[53]  Deren Yang,et al.  InOOH hollow spheres synthesized by a simple hydrothermal reaction. , 2005, The journal of physical chemistry. B.

[54]  E. Longo,et al.  Oriented attachment: an effective mechanism in the formation of anisotropic nanocrystals. , 2005, The journal of physical chemistry. B.

[55]  Noboru Yamazoe,et al.  Toward innovations of gas sensor technology , 2005 .

[56]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[57]  Qing Peng,et al.  Vanadium Pentoxide Nanobelts: Highly Selective and Stable Ethanol Sensor Materials , 2005 .

[58]  Zili Wu,et al.  On the structure of vanadium oxide supported on aluminas: UV and visible raman spectroscopy, UV-visible diffuse reflectance spectroscopy, and temperature-programmed reduction studies. , 2005, The journal of physical chemistry. B.

[59]  Chu Xiangfeng,et al.  Ethanol sensor based on indium oxide nanowires prepared by carbothermal reduction reaction , 2004 .

[60]  S. Weiner,et al.  Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase , 2004, Science.

[61]  Chongwu Zhou,et al.  Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices , 2004 .

[62]  Jordi Arbiol,et al.  The influence of film structure on In2O3 gas response , 2004 .

[63]  J. Aizenberg,et al.  Designing efficient microlens arrays: lessons from Nature , 2004 .

[64]  Jordi Arbiol,et al.  In2O3 films deposited by spray pyrolysis as a material for ozone gas sensors , 2004 .

[65]  B. Liu,et al.  Salt-Assisted Deposition of SnO2 on α-MoO3 Nanorods and Fabrication of Polycrystalline SnO2 Nanotubes , 2004 .

[66]  Pietro Siciliano,et al.  Polycrystalline Well-Shaped Blocks of Indium Oxide Obtained by the Sol−Gel Method and Their Gas-Sensing Properties , 2003 .

[67]  J. Aizenberg,et al.  Fibre-optical features of a glass sponge , 2003, Nature.

[68]  Jimmy C. Yu,et al.  A sonochemical approach to hierarchical porous titania spheres with enhanced photocatalytic activity. , 2003, Chemical communications.

[69]  W. Seo,et al.  Preparation and Optical Properties of Highly Crystalline, Colloidal, and Size‐Controlled Indium Oxide Nanoparticles , 2003 .

[70]  N. Yamazoe,et al.  Oxide Semiconductor Gas Sensors , 2003 .

[71]  S. Tsang,et al.  Ag doped WO3-based powder sensor for the detection of NO gas in air , 2003 .

[72]  Chao Li,et al.  Diameter‐Controlled Growth of Single‐Crystalline In2O3 Nanowires and Their Electronic Properties , 2003 .

[73]  M. Winnik,et al.  Effect of Concentration on the Photoinduced Aggregation of Polymer Nanoparticles , 2002 .

[74]  Bong-Chull Kim,et al.  Effects of Crystal Structures on Gas Sensing Properties of Nanocrystalline ITO Thick Films (Proceedings of The 5Th East Asian Conference on Chemical Sensors: The 33RD Chemical Sensor Symposium) , 2001 .

[75]  Younan Xia,et al.  Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. , 2001, Journal of the American Chemical Society.

[76]  N. Bârsan,et al.  Micromachined metal oxide gas sensors: opportunities to improve sensor performance , 2001 .

[77]  Udo Weimar,et al.  Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors , 2000 .

[78]  David E. Williams Semiconducting oxides as gas-sensitive resistors , 1999 .

[79]  B. Weckhuysen,et al.  Recent progress in diffuse reflectance spectroscopy of supported metal oxide catalysts , 1999 .

[80]  Jiangtao Hu,et al.  Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes , 1999 .

[81]  N. Bârsan,et al.  In2O3 and MoO3–In2O3 thin film semiconductor sensors: interaction with NO2 and O3 , 1998 .

[82]  U. Weimar,et al.  Sol-gel prepared In 2O 3 thin films , 1997 .

[83]  B. Weckhuysen,et al.  Characterization of Al2O3-Supported Manganese Oxides by Electron Spin Resonance and Diffuse Reflectance Spectroscopy , 1997 .

[84]  N. Yamazoe New approaches for improving semiconductor gas sensors , 1991 .

[85]  Lian Gao,et al.  Morphological Transformation of Fe3O4 Spherical Aggregates from Solid to Hollow and Their Self-Assembly under an External Magnetic Field , 2008 .

[86]  Ulrich Simon,et al.  Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? , 2006, Small.

[87]  Wenjia Zhou,et al.  Size-Controllable Growth of Single Crystal In(OH)3 and In2O3 Nanocubes , 2005 .

[88]  Nicolae Barsan,et al.  Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. , 2005, Angewandte Chemie.

[89]  S. Kanzaki,et al.  Thermoelectric CO Gas Sensor Using Thin-Film Catalyst of Au and Co3 O 4 , 2004 .