Weak lensing of the CMB: A harmonic approach

Weak lensing of CMB anisotropies and polarization for the power spectra and higher order statistics can be handled directly in harmonic-space without recourse to real-space correlation functions. For the power spectra, this approach not only simplifies the calculations but is also readily generalized from the usual flat-sky approximation to the exact all-sky form by replacing Fourier harmonics with spherical harmonics. Counterintuitively, because of the nonlinear nature of the effect, errors in the flat-sky approximation do not improve on smaller scales. They remain at the 10% level through the acoustic regime and are sufficiently large to merit adoption of the all-sky formalism. For the bispectra, a cosmic variance limited detection of the correlation with secondary anisotropies has an order of magnitude greater signal-to-noise for combinations involving magnetic parity polarization than those involving the temperature alone. Detection of these bispectra will, however, be severely noise and foreground limited even with the Planck satellite, leaving room for improvement with higher sensitivity experiments. We also provide a general study of the correspondence between flat and all sky potentials, deflection angles, convergence and shear for the power spectra and bispectra.