On the origin of anisotropic lithiation of silicon

Abstract Silicon has the highest known theoretical capacity (∼4140 mAhg −1 ) to store lithium. Among different forms of Si, Si nanowires (SiNWs) are the most promising candidates for the next-generation lithium-ion batteries. Lithiation of SiNWs is a complex process, which is not very well understood. Here, we present density functional theory calculations on Li incorporation in SiNWs using surface and interface geometries. Our results show that, initially, Li intercalation proceeds through Si(110) facets, leading to the formation of an amorphous Li 2 Si shell. For interfaces between the lithiated (amorphous Li 2 Si) shell and unlithiated (pristine c-Si) core region we find that the Li intercalation barriers are independent of the actual interface orientation, while interface energies show an orientation dependence similar to surface energies. In particular, a-Li 2 Si/c-Si(111) is most favorable while a-Li 2 Si/c-Si(110) is least favorable. Since high-energy interfaces typically show a higher mobility than low-energy interfaces, the experimentally observed anisotropic swelling of SiNWs can be understood on the basis of interface energetics.

[1]  E. Kaxiras,et al.  Diffusion of Lithium in Bulk Amorphous Silicon: A Theoretical Study , 2012 .

[2]  C. Wolverton,et al.  First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon. , 2012, Journal of the American Chemical Society.

[3]  Jochen Rohrer,et al.  Insights into Degradation of Si Anodes from First-Principle Calculations , 2013 .

[4]  S. T. Picraux,et al.  In situ atomic-scale imaging of electrochemical lithiation in silicon. , 2012, Nature nanotechnology.

[5]  C. C. Ahn,et al.  Highly Reversible Lithium Storage in Nanostructured Silicon , 2003 .

[6]  Otto Zhou,et al.  Alloy Formation in Nanostructured Silicon , 2001 .

[7]  H. Neddermeyer,et al.  Scanning tunneling microscopy at low temperatures on the c(4×2)/(2×1) phase transition of Si(100) , 1994 .

[8]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[9]  Prashant N. Kumta,et al.  Interfacial Properties of the a-Si ∕ Cu :Active–Inactive Thin-Film Anode System for Lithium-Ion Batteries , 2006 .

[10]  Enge Wang,et al.  Lithium insertion in silicon nanowires: an ab initio study. , 2010, Nano letters.

[11]  V Srinivasan,et al.  Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. , 2011, Physical review letters.

[12]  Friedhelm Bechstedt,et al.  Absolute surface energies of group-IV semiconductors: Dependence on orientation and reconstruction , 2002 .

[13]  Jian Yu Huang,et al.  Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. , 2012, Nano letters.

[14]  F. Liu,et al.  Relative stability of Si surfaces: A first-principles study , 2005 .

[15]  P. Kaghazchi Theoretical studies of Li incorporation into Si(111) , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  P. Kaghazchi Mechanism of Li intercalation into Si , 2013 .

[17]  John P. Sullivan,et al.  Ultrafast electrochemical lithiation of individual Si nanowire anodes. , 2011, Nano letters.

[18]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[19]  John G. Ekerdt,et al.  Structure and Properties of Li―Si Alloys: A First-Principles Study , 2011 .

[20]  J. Chelikowsky,et al.  Controlling diffusion of lithium in silicon nanostructures. , 2010, Nano letters.

[21]  S. Jung,et al.  Anisotropic volume expansion of crystalline silicon during electrochemical lithium insertion: an atomic level rationale. , 2012, Nano letters.

[22]  Yang Liu,et al.  Anisotropic swelling and fracture of silicon nanowires during lithiation. , 2011, Nano letters.

[23]  Z. Suo,et al.  Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries. , 2012, Nano letters.

[24]  A. Edwards,et al.  Layer intermixing during metal/metal oxide adsorption: Ti/sapphire(0001) , 2002 .

[25]  T. D. Hatchard,et al.  Reaction of Li with Alloy Thin Films Studied by In Situ AFM , 2003 .

[26]  Yue Qi,et al.  Elastic softening of amorphous and crystalline Li–Si Phases with increasing Li concentration: A first-principles study , 2010 .

[27]  S. Jung,et al.  Facet-dependent lithium intercalation into Si crystals: Si(100) vs. Si(111). , 2011, Physical chemistry chemical physics : PCCP.

[28]  H. Lee,et al.  Stress effect on cycle properties of the silicon thin-film anode , 2001 .

[29]  Vincent Chevrier,et al.  First Principles Model of Amorphous Silicon Lithiation , 2009 .

[30]  Ueda,et al.  Structural studies of Si(111)2 x 1 surfaces using low-energy electron diffraction. , 1986, Physical review. B, Condensed matter.

[31]  P. Kumta,et al.  Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries , 2007 .

[32]  Young-Il Jang,et al.  Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage , 2003 .

[33]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .

[34]  Jun Chen,et al.  Lithium transport at silicon thin film: barrier for high-rate capability anode. , 2010, The Journal of chemical physics.