Search for squarks and gluinos in final states with jets and missing transverse momentum at $\sqrt{s}$ =13 ${\mathrm{TeV}}$ with the ATLAS detector

A search for squarks and gluinos in final states containing hadronic jets, missing transverse momentum but no electrons or muons is presented. The data were recorded in 2015 by the ATLAS experiment in √ s = 13 TeV proton–proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 3.2 fb−1 of analyzed data. Results are interpreted within simplified models that assume R-parity is conserved and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95 % confidence level on the mass of the gluino is set at 1.51 TeV for a simplified model incorporating only a gluino octet and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate firstand second-generation squarks, squark masses below 1.03 TeV are excluded for a massless lightest neutralino. These limits substantially extend the region of supersymmetric parameter space excluded by previous measurements with the ATLAS detector.

[1]  I. Connelly Simulation of Top Quark Production for the ATLAS experiment , 2017 .

[2]  Scoap Muon reconstruction performance of the ATLAS detector in proton–proton collision data at s =13 TeV , 2016 .

[3]  Christian,et al.  Performance of pile-up mitigation techniques for jets in pp collisions at √ s = 8 TeV using the ATLAS detector , 2016 .

[4]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[5]  Peter Uwer,et al.  HatHor for single top-quark production: Updated predictions and uncertainty estimates for single top-quark production in hadronic collisions , 2014, Comput. Phys. Commun..

[6]  HAdronic Top and Heavy quarks crOss section calculatoR . — Release , 2015 .

[7]  M. Baak,et al.  HistFitter software framework for statistical data analysis , 2014, 1410.1280.

[8]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[9]  Michal Czakon,et al.  Top++: A program for the calculation of the top-pair cross-section at hadron colliders , 2011, Comput. Phys. Commun..

[10]  A. Mitov,et al.  Total top-quark pair-production cross section at hadron colliders through O(αS(4)). , 2013, Physical review letters.

[11]  S. Forte,et al.  Parton distributions with LHC data , 2012, 1207.1303.

[12]  R. Frederix,et al.  Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations , 2012, 1212.3460.

[13]  F. Siegert,et al.  QCD matrix elements + parton showers. The NLO case , 2012, Journal of High Energy Physics.

[14]  Chunhui Chen,et al.  New approach to identifying boosted hadronically decaying particles using jet substructure in its center-of-mass frame , 2011, 1112.2567.

[15]  F Cascioli,et al.  Scattering amplitudes with open loops. , 2011, Physical review letters.

[16]  Leif Lönnblad,et al.  Matching tree-level matrix elements with interleaved showers , 2011, 1109.4829.

[17]  Jared A. Evans,et al.  Simplified Models for LHC New Physics Searches , 2011, 1105.2838.

[18]  J. T. Childers,et al.  Performance of the ATLAS Trigger System in 2010 , 2012 .

[19]  M. Kramer,et al.  SQUARK AND GLUINO HADROPRODUCTION , 2011, 1105.1110.

[20]  Peter Uwer,et al.  HATHOR - HAdronic Top and Heavy quarks crOss section calculatoR , 2011, Comput. Phys. Commun..

[21]  N. Kidonakis Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production , 2011, 1103.2792.

[22]  Ye Li,et al.  FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order , 2010, Comput. Phys. Commun..

[23]  M. Beckingham,et al.  The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim , 2010 .

[24]  J. T. Childers,et al.  The ATLAS Simulation Infrastructure , 2010, 1005.4568.

[25]  C. Oleari The POWHEG-BOX , 2010, 1007.3893.

[26]  J. Huston,et al.  New parton distributions for collider physics , 2010, 1007.2241.

[27]  N. Kidonakis Two-loop soft anomalous dimensions for single top quark associated production with a W- or H- , 2010, 1005.4451.

[28]  P. Skands Tuning Monte Carlo Generators: The Perugia Tunes , 2010, 1005.3457.

[29]  E. Re,et al.  A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX , 2010, 1002.2581.

[30]  Eric Laenen,et al.  Soft-gluon resummation for squark and gluino hadroproduction , 2017 .

[31]  A. Kulesza,et al.  Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC , 2009, 0905.4749.

[32]  P. Skands The Perugia Tunes , 2009, 0905.3418.

[33]  Frank Siegert,et al.  QCD matrix elements and truncated showers , 2009, 0903.1219.

[34]  P. Schuster,et al.  Simplified models for a first characterization of new physics at the LHC , 2008, 0810.3921.

[35]  F. Siegert,et al.  Event generation with SHERPA 1.1 , 2008, 0811.4622.

[36]  A. Goshaw The ATLAS Experiment at the CERN Large Hadron Collider , 2008 .

[37]  T. Gleisberg,et al.  Comix, a new matrix element generator , 2008, 0808.3674.

[38]  D. Rousseau,et al.  Calorimeter Clustering Algorithms : Description and Performance , 2008 .

[39]  K. Melnikov,et al.  Next-to-leading order QCD corrections to tt¯Z production at the LHC , 2008, 0804.2220.

[40]  J. Wacker,et al.  Searching for directly decaying gluinos at the Tevatron , 2008, 0803.0019.

[41]  M. Cacciari,et al.  The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.

[42]  M. Cacciari,et al.  Pileup subtraction using jet areas , 2007, 0707.1378.

[43]  S. Schumann,et al.  A Parton shower algorithm based on Catani-Seymour dipole factorisation , 2007, 0709.1027.

[44]  R. S. Thorne,et al.  Parton distributions for the LHC , 2007, 0901.0002.

[45]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[46]  J. Huston,et al.  New generation of parton distributions with uncertainties from global QCD analysis , 2002, hep-ph/0201195.

[47]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[48]  D. Lange,et al.  The EvtGen particle decay simulation package , 2001 .

[49]  P. Zerwas,et al.  Squark and gluino production at hadron colliders , 1996, hep-ph/9610490.

[50]  P. Fayet,et al.  Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry , 1978 .

[51]  P. Fayet Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions , 1977 .

[52]  P. Fayet Supersymmetry and weak, electromagnetic and strong interactions , 1976 .

[53]  B. Zumino,et al.  Supergauge Invariant Extension of Quantum Electrodynamics , 1974 .

[54]  D. Volkov,et al.  Is the Neutrino a Goldstone Particle , 1973 .

[55]  Y. Golfand,et al.  EXTENSION OF THE ALGEBRA OF POINCARE GROUP GENERATORS AND VIOLATION OF P INVARIANCE. , 1971 .