Coupled ferroelectricity and superconductivity in bilayer T_d-MoTe_2

[1]  J. Hone,et al.  Identifying the Transition Order in an Artificial Ferroelectric van der Waals Heterostructure. , 2022, Nano letters.

[2]  Y. Wen,et al.  Prediction of ferroelectric superconductors with reversible superconducting diode effect , 2022, Physical Review B.

[3]  G. Kotliar,et al.  Iron pnictides and chalcogenides: a new paradigm for superconductivity , 2022, Nature.

[4]  Kenji Watanabe,et al.  Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides , 2021, Nature Nanotechnology.

[5]  O. Grånäs,et al.  Manipulation of Stacking Order in Td-WTe2 by Ultrafast Optical Excitation , 2021, ACS nano.

[6]  A. Millis,et al.  Quantum criticality in twisted transition metal dichalcogenides , 2021, Nature.

[7]  L. Balicas,et al.  Enhanced Superconductivity in Monolayer Td-MoTe2. , 2021, Nano letters.

[8]  Kenji Watanabe,et al.  Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene , 2021, Nature.

[9]  Wenguang Zhu,et al.  Direct measurement of ferroelectric polarization in a tunable semimetal , 2020, Nature communications.

[10]  J. Kong,et al.  Unconventional ferroelectricity in moiré heterostructures , 2020, Nature.

[11]  Kenji Watanabe,et al.  Stacking-engineered ferroelectricity in bilayer boron nitride , 2020, Science.

[12]  P. Kim,et al.  Tunable spin-polarized correlated states in twisted double bilayer graphene , 2020, Nature.

[13]  R. Cava,et al.  Evidence for an edge supercurrent in the Weyl superconductor MoTe2 , 2020, Science.

[14]  J. Shan,et al.  Two-fold symmetric superconductivity in few-layer NbSe2 , 2020, Nature Physics.

[15]  Xu Du,et al.  Bandgap opening in MoTe2 thin flakes induced by surface oxidation , 2020, Frontiers of Physics.

[16]  W. Ren,et al.  Vertical ferroelectric switching by in-plane sliding of two-dimensional bilayer WTe2. , 2019, Nanoscale.

[17]  R. Greene,et al.  The Strange Metal State of the Electron-Doped Cuprates , 2019, 1905.04998.

[18]  J. Hao,et al.  Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit , 2019, Nature Communications.

[19]  Kenji Watanabe,et al.  Strange Metal in Magic-Angle Graphene with near Planckian Dissipation. , 2019, Physical review letters.

[20]  K. Nelson,et al.  Terahertz field–induced ferroelectricity in quantum paraelectric SrTiO3 , 2018, Science.

[21]  Ju Li,et al.  Origin of Two-Dimensional Vertical Ferroelectricity in WTe2 Bilayer and Multilayer. , 2018, The journal of physical chemistry letters.

[22]  Wenjin Zhao,et al.  Gate-induced superconductivity in a monolayer topological insulator , 2018, Science.

[23]  Kenji Watanabe,et al.  Electrically tunable low-density superconductivity in a monolayer topological insulator , 2018, Science.

[24]  Zaiyao Fei,et al.  Ferroelectric switching of a two-dimensional metal , 2018, Nature.

[25]  Xuan Luo,et al.  Origin of magnetoresistance suppression in thin γ−MoTe2 , 2018, Physical Review B.

[26]  N. Hussey,et al.  A tale of two metals: contrasting criticalities in the pnictides and hole-doped cuprates , 2018, Reports on progress in physics. Physical Society.

[27]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[28]  Kenji Watanabe,et al.  Magnetoresistance and quantum oscillations of an electrostatically tuned semimetal-to-metal transition in ultrathin WTe 2 , 2017, 1701.08839.

[29]  Y. Sun,et al.  Extremely large magnetoresistance in the type-II Weyl semimetal Mo Te 2 , 2016, 1706.03356.

[30]  C. Felser,et al.  Signature of type-II Weyl semimetal phase in MoTe2 , 2016, Nature Communications.

[31]  W. Duan,et al.  Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2 , 2016, Nature Physics.

[32]  B. Andersen,et al.  Spin-driven nematic instability of the multiorbital Hubbard model: Application to iron-based superconductors , 2015, 1510.01389.

[33]  C. Felser,et al.  Superconductivity in Weyl semimetal candidate MoTe2 , 2015, Nature Communications.

[34]  K. T. Law,et al.  Ising pairing in superconducting NbSe2 atomic layers , 2015, Nature Physics.

[35]  M. Bibes,et al.  BiFeO3 epitaxial thin films and devices: past, present and future , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  Q. Gibson,et al.  Large, non-saturating magnetoresistance in WTe2 , 2014, Nature.

[37]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[38]  N. Marzari,et al.  Maximally-localized Wannier Functions: Theory and Applications , 2011, 1112.5411.

[39]  Hongtao Yuan,et al.  Liquid-gated interface superconductivity on an atomically flat film. , 2010, Nature materials.

[40]  D. J. Scalapino,et al.  Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides , 2008, 0812.0343.

[41]  T. Zandt,et al.  Quadratic temperature dependence up to 50 K of the resistivity of metallic MoTe2 , 2007 .

[42]  Matthew Dawber,et al.  Modern Physics of Ferroelectrics: Essential Background , 2007 .

[43]  N. Marzari,et al.  wannier90: A tool for obtaining maximally-localised Wannier functions , 2007, Comput. Phys. Commun..

[44]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[45]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[46]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[47]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[48]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[49]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[50]  A. Wilson,et al.  The theory of the magneto-resistance effects in metals , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[51]  S. Latini,et al.  Supplementary Material: Simulating terahertz field-induced ferroelectricity in quantum paraelectric SrTiO 3 , 2022 .