Transporting Labels via Hierarchical Optimal Transport for Semi-Supervised Learning

[1]  Jia Li,et al.  Aggregated Wasserstein Distance and State Registration for Hidden Markov Models , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Eva L. Dyer,et al.  Hierarchical Optimal Transport for Multimodal Distribution Alignment , 2019, NeurIPS.

[3]  Justin Solomon,et al.  Hierarchical Optimal Transport for Document Representation , 2019, NeurIPS.

[4]  Yannis Avrithis,et al.  Label Propagation for Deep Semi-Supervised Learning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Chen-Yu Lee,et al.  Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Joost van de Weijer,et al.  Exploiting Unlabeled Data in CNNs by Self-Supervised Learning to Rank , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Gabriel Peyré,et al.  Sample Complexity of Sinkhorn Divergences , 2018, AISTATS.

[8]  Zhanxing Zhu,et al.  Tangent-Normal Adversarial Regularization for Semi-Supervised Learning , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Andrew Gordon Wilson,et al.  There Are Many Consistent Explanations of Unlabeled Data: Why You Should Average , 2018, ICLR.

[10]  Shin Ishii,et al.  Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Nanning Zheng,et al.  Transductive Semi-Supervised Deep Learning Using Min-Max Features , 2018, ECCV.

[12]  Chao Yang,et al.  A Survey on Deep Transfer Learning , 2018, ICANN.

[13]  Wen Li,et al.  Semi-Supervised Optimal Transport for Heterogeneous Domain Adaptation , 2018, IJCAI.

[14]  Zhi-Hua Zhou,et al.  Tri-net for Semi-Supervised Deep Learning , 2018, IJCAI.

[15]  Yalin Wang,et al.  Variational Wasserstein Clustering , 2018, ECCV.

[16]  Nicolas Courty,et al.  DeepJDOT: Deep Joint distribution optimal transport for unsupervised domain adaptation , 2018, ECCV.

[17]  Colin Raffel,et al.  Realistic Evaluation of Deep Semi-Supervised Learning Algorithms , 2018, NeurIPS.

[18]  Sam Kwong,et al.  Semi-Supervised Spectral Clustering With Structured Sparsity Regularization , 2018, IEEE Signal Processing Letters.

[19]  Tommi S. Jaakkola,et al.  Structured Optimal Transport , 2018, AISTATS.

[20]  Bo Zhang,et al.  Smooth Neighbors on Teacher Graphs for Semi-Supervised Learning , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[21]  Jian Shen,et al.  Wasserstein Distance Guided Representation Learning for Domain Adaptation , 2017, AAAI.

[22]  Shun-ichi Amari,et al.  Information geometry connecting Wasserstein distance and Kullback–Leibler divergence via the entropy-relaxed transportation problem , 2017, Information Geometry.

[23]  Gustavo K. Rohde,et al.  Optimal Mass Transport: Signal processing and machine-learning applications , 2017, IEEE Signal Processing Magazine.

[24]  Dinh Q. Phung,et al.  Multilevel Clustering via Wasserstein Means , 2017, ICML.

[25]  Harri Valpola,et al.  Weight-averaged consistency targets improve semi-supervised deep learning results , 2017, ArXiv.

[26]  Léon Bottou,et al.  Wasserstein GAN , 2017, ArXiv.

[27]  Geoffrey E. Hinton,et al.  Regularizing Neural Networks by Penalizing Confident Output Distributions , 2017, ICLR.

[28]  Timo Aila,et al.  Temporal Ensembling for Semi-Supervised Learning , 2016, ICLR.

[29]  James Zijun Wang,et al.  Fast Discrete Distribution Clustering Using Wasserstein Barycenter With Sparse Support , 2015, IEEE Transactions on Signal Processing.

[30]  Christine Guillemot,et al.  A study of the classification of low-dimensional data with supervised manifold learning , 2015, J. Mach. Learn. Res..

[31]  Nicolas Courty,et al.  Optimal Transport for Domain Adaptation , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Yu Qiao,et al.  A Discriminative Feature Learning Approach for Deep Face Recognition , 2016, ECCV.

[33]  Tolga Tasdizen,et al.  Regularization With Stochastic Transformations and Perturbations for Deep Semi-Supervised Learning , 2016, NIPS.

[34]  Oriol Vinyals,et al.  Matching Networks for One Shot Learning , 2016, NIPS.

[35]  Shun-ichi Amari,et al.  Information Geometry and Its Applications , 2016 .

[36]  Yang Zou,et al.  Sliced Wasserstein Kernels for Probability Distributions , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Steffen Borgwardt,et al.  Discrete Wasserstein barycenters: optimal transport for discrete data , 2015, Mathematical Methods of Operations Research.

[38]  X. Nguyen Borrowing strengh in hierarchical Bayes: Posterior concentration of the Dirichlet base measure , 2016 .

[39]  J. A. Cuesta-Albertos,et al.  A fixed-point approach to barycenters in Wasserstein space , 2015, 1511.05355.

[40]  F. Santambrogio Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling , 2015 .

[41]  Gabriel Peyré,et al.  Convolutional wasserstein distances , 2015, ACM Trans. Graph..

[42]  Tapani Raiko,et al.  Semi-supervised Learning with Ladder Networks , 2015, NIPS.

[43]  Hossein Mobahi,et al.  Learning with a Wasserstein Loss , 2015, NIPS.

[44]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[45]  Filippo Santambrogio,et al.  Optimal Transport for Applied Mathematicians , 2015 .

[46]  Philip Bachman,et al.  Learning with Pseudo-Ensembles , 2014, NIPS.

[47]  Arnaud Doucet,et al.  Fast Computation of Wasserstein Barycenters , 2013, ICML.

[48]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[49]  Christoph Schnörr,et al.  A Hierarchical Approach to Optimal Transport , 2013, SSVM.

[50]  XuanLong Nguyen Borrowing strength in hierarchical Bayes: convergence of the Dirichlet base measure , 2013, ArXiv.

[51]  Dong-Hyun Lee,et al.  Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks , 2013 .

[52]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[53]  Guillaume Carlier,et al.  Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..

[54]  Andrew Y. Ng,et al.  Reading Digits in Natural Images with Unsupervised Feature Learning , 2011 .

[55]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[56]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[57]  Philippe Thomas,et al.  Semi-Supervised Learning by Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien (Review) , 2009 .

[58]  C. Villani Optimal Transport: Old and New , 2008 .

[59]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[60]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[61]  Bernhard Schölkopf,et al.  Cluster Kernels for Semi-Supervised Learning , 2002, NIPS.

[62]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[63]  David Pollard,et al.  Quantization and the method of k -means , 1982, IEEE Trans. Inf. Theory.