Local Improvement Results for Anderson Acceleration with Inaccurate Function Evaluations
暂无分享,去创建一个
Roger P. Pawlowski | C. T. Kelley | Alex Toth | Thomas M. Evans | Steven P. Hamilton | Stuart R. Slattery | J. Austin Ellis | C. Kelley | R. Pawlowski | A. Toth | S. Hamilton | S. Slattery | T. Evans | J. Ellis
[1] Donald G. M. Anderson. Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.
[2] Reinhold Schneider,et al. An analysis for the DIIS acceleration method used in quantum chemistry calculations , 2011 .
[3] Xiaojun Chen,et al. Newton's Method for Monte Carlo-Based Residuals , 2015, SIAM J. Numer. Anal..
[4] Derek Gaston,et al. MOOSE: A parallel computational framework for coupled systems of nonlinear equations , 2009 .
[5] C. T. Kelley,et al. Hybrid Deterministic/Monte Carlo Neutronics , 2013, SIAM J. Sci. Comput..
[6] P. Pulay. Improved SCF convergence acceleration , 1982 .
[7] Jeffrey Alan Willert,et al. Hybrid Deterministic/Monte Carlo Methods for Solving the Neutron Transport Equation and k-Eigenvalue Problem , 2013 .
[8] P. Pulay. Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .
[9] R. Schneider,et al. DIRECT MINIMIZATION FOR CALCULATING INVARIANT SUBSPACES IN DENSITY FUNCTIONAL COMPUTATIONS OF THE ELECTRONIC STRUCTURE , 2008, 0805.1190.
[10] C. T. Kelley,et al. Convergence Analysis for Anderson Acceleration , 2015, SIAM J. Numer. Anal..
[11] C. T. Kelley,et al. Mesh Independence of Matrix-Free Methods for Path Following , 1999, SIAM J. Sci. Comput..
[12] Valeria Simoncini,et al. Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..