Electromagnetic wave propagation in dispersive and complex material with time domain techniques

In this paper a time domain formulation of the first and second precursor in a dispersive materials is reviewed. These precursors are determined by the susceptibility kernel of the medium, which characterizes the medium in a time domain formulation. The propagator operators of the fields are corner stones in the formulation. These operators are then approximated by a pertinent factorization procedure that defines to the first and second precursors of the medium. Wave propagation in a biisotropic medium is also treated and the early time behavior of a transient signal is addressed. Aseries of numerical examples illustrates the theory.

[1]  The Theory of the Propagation of TEM-Pulses in Dispersive Bi-Isotropic Slabs , 1995 .

[2]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[3]  Peter Linz,et al.  Analytical and numerical methods for Volterra equations , 1985, SIAM studies in applied and numerical mathematics.

[4]  Robert J Krueger,et al.  An electromagnetic inverse problem for dispersive media , 1985 .

[5]  R. Kress Linear Integral Equations , 1989 .

[6]  G. Kristensson,et al.  Effect of dissipation on the constitutive relations of bi-anisotropic media - the optical response , 1997 .

[7]  Ari Sihvola,et al.  Electromagnetic Waves in Bi-Isotropic and Chiral Media , 1994 .

[8]  D. A. Kleinman,et al.  Infrared Lattice Bands of Quartz , 1961 .

[9]  Anders Karlsson,et al.  The Time-Domain Theory of Forerunners , 1998 .

[10]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[11]  Sten Rikte,et al.  Forerunners in bigyrotropic materials , 1998 .

[12]  Direct and inverse scattering problems in dispersive media-Green's functions and invariant imbedding techniques , 1990 .

[13]  Gerhard Kristensson,et al.  Using Local Differential Operators to Model Dispersion in Dielectric Media , 1997 .

[14]  A. Sommerfeld,et al.  Über die Fortpflanzung des Lichtes in dispergierenden Medien , 1914 .

[15]  J. Swinburne Electromagnetic Theory , 1894, Nature.

[16]  G. Kristensson,et al.  Invariant imbedding and inverse problems , 1992 .

[17]  Vijay K. Varadan,et al.  Time-Harmonic Electromagnetic Fields in Chiral Media , 1989 .

[18]  Sten Rikte Existence, Uniqueness, and Causality Theorems for Wave Propagation in Stratified, Temporally Dispersive, Complex Media , 1997, SIAM J. Appl. Math..

[19]  Ismo V. Lindell,et al.  Electromagnetic Waves in Chiral and Bi-Isotropic Media , 1994 .

[20]  Sailing He,et al.  Time domain wave-splittings and inverse problems , 1998 .

[21]  Sailing He,et al.  Time domain direct and inverse problems for a nonuniform LCRG line with internal sources , 1997 .

[22]  E. Beltrami Considerazioni idrodinamiche , 1889 .

[23]  A. Lakhtakia,et al.  GAUSSIAN PULSE PROPAGATION IN A LINEAR, LOSSY CHIRAL MEDIUM , 1997 .

[24]  H. Ammari,et al.  Time-harmonic Electromagnetic Fields in Chiral Media , 1996 .

[25]  Nicholas Chako,et al.  Wave propagation and group velocity , 1960 .

[26]  N. Engheta,et al.  Transients in chiral media with single-resonance dispersion , 1993 .

[27]  Wave propagators for transient waves in periodic media , 1995 .

[28]  Sommerfeld's forerunner in stratified isotropic and bi-isotropic media , 1994 .

[29]  George C. Sherman,et al.  Electromagnetic Pulse Propagation in Causal Dielectrics , 1994 .

[30]  Time-domain methods for complex media , 1997 .

[31]  A. Lakhtakia Time-dependent beltrami fields in material continua: The Beltrami-Maxwell postulates , 1994 .

[32]  Anders Karlsson,et al.  Constitutive Relations, Dissipation, and Reciprocity for the Maxwell Equations in the Time Domain , 1992 .

[33]  Igor Egorov Second forerunners in reflection and transmission data , 1998 .