Non-commutative circuits and the sum-of-squares problem
暂无分享,去创建一个
[1] S. Winograd. On the number of multiplications necessary to compute certain functions , 1970 .
[2] Martin Tompa,et al. A Direct Version of Shamir and Snir's Lower Bounds on Monotone Circuit Depth , 1994, Inf. Process. Lett..
[3] Ran Raz,et al. Lower Bounds and Separations for Constant Depth Multilinear Circuits , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.
[4] K. Ramachandra,et al. Vermeidung von Divisionen. , 1973 .
[5] S Winograd,et al. On the number of multiplications required to compute certain functions. , 1967, Proceedings of the National Academy of Sciences of the United States of America.
[6] Sergey Yuzvinsky,et al. A series of monomial pairings , 1984 .
[7] Amir Yehudayoff,et al. Homogeneous Formulas and Symmetric Polynomials , 2011, computational complexity.
[8] Leslie G. Valiant,et al. Completeness classes in algebra , 1979, STOC.
[9] Noam Nisan,et al. Lower bounds for non-commutative computation , 1991, STOC '91.
[10] Eric Vigoda,et al. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.
[11] Ran Raz,et al. Multi-linear formulas for permanent and determinant are of super-polynomial size , 2004, STOC '04.
[12] V. Strassen. Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten , 1973 .
[13] Avi Wigderson,et al. Relationless Completeness and Separations , 2010, 2010 IEEE 25th Annual Conference on Computational Complexity.
[14] J. Gathen. Algebraic complexity theory , 1988 .
[15] Ketan Mulmuley,et al. On P vs. NP, Geometric Complexity Theory, and the Riemann Hypothesis , 2009, ArXiv.
[16] Laurent Hyafil,et al. On the parallel evaluation of multivariate polynomials , 1978, SIAM J. Comput..
[17] A. Hurwitz,et al. Über die Komposition der quadratischen Formen , 1922 .
[18] Ran Raz. Elusive functions and lower bounds for arithmetic circuits , 2008, STOC '08.
[19] A. Pfister. Zur Darstellung definiter Funktionen als Summe von Quadraten , 1967 .
[20] Ran Raz. Elusive Functions and Lower Bounds for Arithmetic Circuits , 2010, Theory Comput..
[21] Volker Strassen,et al. Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[22] K. Y. Lam,et al. Some new results on composition of quadratic forms , 1985 .
[23] Raoul Bott,et al. ON THE IMMERSION PROBLEM FOR REAL PROJECTIVE SPACES , 2007 .
[24] P. Yiu,et al. Sums of Squares Formulae With Integer Coefficients , 1987, Canadian Mathematical Bulletin.
[25] Lin Yu-qing,et al. Matching polynomial of graph , 2007 .
[26] A. Hurwitz. Über die Komposition der quadratischen Formen von beliebig vielen Variablen , 1963 .
[27] Roy Dubisch. Composition of Quadratic Forms , 1946 .
[28] A. Barvinok. Polynomial time algorithms to approximate permanents and mixed discriminants within a simply exponential factor , 1999 .
[29] T. Y. Lam,et al. ON YUZVINSKY'S MONOMIAL PAIRINGS , 1993 .
[30] Steve Chien,et al. Clifford algebras and approximating the permanent , 2002, STOC '02.
[31] Ran Raz,et al. A Lower Bound for the Size of Syntactically Multilinear Arithmetic Circuits , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).
[32] E. Jenkins,et al. On the composition of quadratic forms , 1935 .
[33] Peter Bürgisser,et al. Completeness and Reduction in Algebraic Complexity Theory , 2000, Algorithms and computation in mathematics.
[34] Noam Nisan,et al. Lower bounds on arithmetic circuits via partial derivatives , 2005, computational complexity.
[35] Paul Yiu,et al. ON THE PRODUCT OF TWO SUMS OF 16 SQUARES AS A SUM OF SQUARES OF INTEGRAL BILINEAR FORMS , 1990 .
[36] Steve Chien,et al. Algebras with polynomial identities and computing the determinant , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.
[37] Ran Raz,et al. Lower Bounds and Separations for Constant Depth Multilinear Circuits , 2008, Computational Complexity Conference.
[38] Alexander Barvinok. A simple polynomial time algorithm to approximate the permanent within a simply exponential factor , 1997 .
[39] Richard J. Lipton,et al. A Monte-Carlo Algorithm for Estimating the Permanent , 1993, SIAM J. Comput..