Neuromodulation of vertebrate motor neuron membrane properties

The short-term function of motor neurons is to integrate synaptic inputs converging onto the somato-dendritic membrane and to transform the net synaptic drive into spike trains. A set of voltage-gated ion channels determines the electro-responsiveness and thereby the motor neuron's input-output function. In addition, several of the decisive ion channels are transmitter controlled, which results in a flexible control of the input-output relationship.

[1]  Shik Ml,et al.  Work of the muscles and single motor neurons during controlled locomotion , 1967 .

[2]  J. Rekling Interaction between thyrotropin-releasing hormone (TRH) and NMDA-receptor-mediated responses in hypoglossal motoneurones , 1992, Brain Research.

[3]  T. Takahashi,et al.  Serotonin enhances a low-voltage-activated calcium current in rat spinal motoneurons , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  J. Rekling,et al.  Electrophysiological properties of hypoglossal motoneurons of guinea-pigs studied in vitro , 1989, Neuroscience.

[5]  H. Kimura,et al.  Developmental changes in the serotoninergic innervation of hindlimb extensor motoneurons in neonatal rats. , 1992, Brain research. Developmental brain research.

[6]  M. Raggenbass,et al.  Vasopressin generates a persistent voltage-dependent sodium current in a mammalian motoneuron , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  Daniel Kernell,et al.  Synaptic effects on recruitment gain: a mechanism of importance for the input-output relations of motoneurone pools? , 1990, Brain Research.

[8]  A. J. Berger,et al.  Direct excitation of rat spinal motoneurones by serotonin. , 1990, The Journal of physiology.

[9]  S. Grillner,et al.  The neural network underlying locomotion in lamprey-synaptic and cellular mechanisms , 1991, Neuron.

[10]  N. Dun,et al.  Serotonin via presynaptic 5-HT1 receptors attenuates synaptic transmission to immature rat motoneurons in vitro , 1991, Brain Research.

[11]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[12]  R. Harris-Warrick,et al.  Actions of identified neuromodulatory neurons in a simple motor system , 1990, Trends in Neurosciences.

[13]  B. Jacobs,et al.  Structure and function of the brain serotonin system. , 1992, Physiological reviews.

[14]  D F Russell,et al.  Special cellular and synaptic mechanisms in motor pattern generation. , 1988, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology.

[15]  S. Fung,et al.  Serotonin depolarizes cat spinal motoneurons in situ and decreases motoneuron afterhyperpolarizing potentials , 1989, Brain Research.

[16]  Aron M. Gutman Bistability of Dendrites , 1991, Int. J. Neural Syst..

[17]  O. Kiehn Plateau potentials and active integration in the ‘final common pathway’ for motor behaviour , 1991, Trends in Neurosciences.

[18]  D. F. Russell,et al.  Bursting neural networks: a reexamination. , 1978, Science.

[19]  L. Kaczmarek,et al.  Neuromodulation : the biochemical control of neuronal excitability , 1987 .

[20]  R. Harris-Warrick,et al.  Serotonergic stretch receptors induce plateau properties in a crustacean motor neuron by a dual-conductance mechanism. , 1992, Journal of neurophysiology.

[21]  R. Harris-Warrick,et al.  5-HT modulation of hyperpolarization-activated inward current and calcium-dependent outward current in a crustacean motor neuron. , 1992, Journal of neurophysiology.

[22]  D. Kernell,et al.  Organized variability in the neuromuscular system: a survey of task-related adaptations. , 1992, Archives italiennes de biologie.

[23]  M. Gurnell,et al.  Block by the neuropeptide TRH of an apparently novel K+ conductance of rat motoneurones , 1990, Neuroscience Letters.

[24]  O. Pompeiano,et al.  Locus coeruleus control of spinal motor output. , 1991, Progress in brain research.

[25]  O Kiehn,et al.  Serotonin‐induced bistability of turtle motoneurones caused by a nifedipine‐sensitive calcium plateau potential. , 1989, The Journal of physiology.

[26]  C. Barnes,et al.  Norepinephrine effects on spinal motoneurons. , 1991, Progress in brain research.

[27]  O Kiehn,et al.  Bistable firing properties of soleus motor units in unrestrained rats. , 1989, Acta physiologica Scandinavica.

[28]  S. Grillner,et al.  Effects of 5-hydroxytryptamine on the afterhyperpolarization, spike frequency regulation, and oscillatory membrane properties in lamprey spinal cord neurons. , 1989, Journal of neurophysiology.

[29]  J. Hancox,et al.  Plateau potentials drive axonal impulse bursts in insect motoneurons , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[30]  D. Wallis,et al.  Serotonin andl-norepinephrine as mediators of altered excitability in neonatal rat motoneurons studied in vitro , 1992, Neuroscience.

[31]  M. Ito,et al.  Electrical behaviour of the motoneurone membrane during intracellularly applied current steps. , 1965, The Journal of physiology.

[32]  Keir G. Pearson,et al.  Octopamine induces bursting and plateau potentials in insect neurones , 1991, Brain Research.