Automated Synthesis of Tableau Calculi

This paper presents a method for synthesising sound and complete tableau calculi. Given a specification of the formal semantics of a logic, the method generates a set of tableau inference rules that can then be used to reason within the logic. The method guarantees that the generated rules form a calculus which is sound and constructively complete. If the logic can be shown to admit finite filtration with respect to a well-defined first-order semantics then adding a general blocking mechanism provides a terminating tableau calculus. The process of generating tableau rules can be completely automated and produces, together with the blocking mechanism, an automated procedure for generating tableau decision procedures. For illustration we show the workability of the approach for a description logic with transitive roles and propositional intuitionistic logic.

[1]  Valentin Goranko,et al.  Tableau-based decision procedure for full coalitional multiagent temporal-epistemic logic of linear time , 2009, AAMAS.

[2]  Franz Baader,et al.  An Overview of Tableau Algorithms for Description Logics , 2001, Stud Logica.

[3]  Saul A. Kripke,et al.  Semantical Analysis of Intuitionistic Logic I , 1965 .

[4]  Diego Calvanese,et al.  The Description Logic Handbook , 2007 .

[5]  Luis Fariñas del Cerro,et al.  Modal Tableaux with Propagation Rules and Structural Rules , 1997, Fundam. Informaticae.

[6]  Patrick Blackburn,et al.  Termination for Hybrid Tableaus , 2007, J. Log. Comput..

[7]  Pierangelo Miglioli,et al.  Generalized Tableau Systems for Intemediate Propositional Logics , 1997, TABLEAUX.

[8]  Rajeev Goré,et al.  The Tableaux Work Bench , 2003, TABLEAUX.

[9]  Boris Motik,et al.  Hypertableau Reasoning for Description Logics , 2009, J. Artif. Intell. Res..

[10]  Marta Cialdea Mayer,et al.  Nominal Substitution at Work with the Global and Converse Modalities , 2010, Advances in Modal Logic.

[11]  I. Horrocks,et al.  A Tableau Decision Procedure for $\mathcal{SHOIQ}$ , 2007, Journal of Automated Reasoning.

[12]  Renate A. Schmidt,et al.  Developing Modal Tableaux and Resolution Methods via First-Order Resolution , 2006, Advances in Modal Logic.

[13]  Ian Horrocks,et al.  Computational modal logic , 2007, Handbook of Modal Logic.

[14]  R. A. Schmidt,et al.  MetTeL A Tableau Prover with Logic-Independent Inference Engine User Manual v . 1 , 2011 .

[15]  Rajeev Goré,et al.  Tableau Methods for Modal and Temporal Logics , 1999 .

[16]  Marcello D'Agostino,et al.  The Taming of the Cut. Classical Refutations with Analytic Cut , 1994, J. Log. Comput..

[17]  Fabio Massacci,et al.  Single Step Tableaux for Modal Logics , 2000, Journal of Automated Reasoning.

[18]  Andreas Herzig,et al.  Tableaux for Public Announcement Logic , 2010, J. Log. Comput..

[19]  Renate A. Schmidt,et al.  A General Tableau Method for Deciding Description Logics, Modal Logics and Related First-Order Fragments , 2008, IJCAR.

[20]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[21]  Camilla Schwind,et al.  Tableau calculi for CSL over minspaces , 2010, CSL 2010.

[22]  F. Massacci Single Step Tableaux for Modal Logics Computational Properties, Complexity and Methodology , 2000 .

[23]  Dominique Longin,et al.  LoTREC: Logical Tableaux Research Engineering Companion , 2005, TABLEAUX.

[24]  Renate A. Schmidt,et al.  Using Tableau to Decide Expressive Description Logics with Role Negation , 2007, ISWC/ASWC.

[25]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[26]  Patrick Blackburn,et al.  Hybrid languages , 1995, J. Log. Lang. Inf..

[27]  B. Nebel Introduction to Modal Logic Introduction , 2009 .

[28]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[29]  François Bry,et al.  Proving Finite Satisfiability of Deductive Databases , 1987, CSL.

[30]  Marta Cialdea Mayer,et al.  Ground and Free-Variable Tableaux for Variants of Quantified Modal Logics , 2001, Stud Logica.

[31]  Renate A. Schmidt,et al.  Automated Synthesis of Tableau Calculi , 2009, TABLEAUX.

[32]  R. A. Bull Review: Melvin Fitting, Proof Methods for Modal and Intuitionistic Logics , 1985, Journal of Symbolic Logic.

[33]  Miroslava Tzakova,et al.  Tableau Calculi for Hybrid Logics , 1999, TABLEAUX.

[34]  Michael Fisher,et al.  Automated reasoning about metric and topology (System description) , 2006 .

[35]  Luis Fariñas del Cerro,et al.  A General Framework for Pattern-Driven Modal Tableaux , 2002, Log. J. IGPL.

[36]  Ian Horrocks,et al.  A Tableaux Decision Procedure for SHOIQ , 2005, IJCAI.

[37]  François Bry,et al.  A Deduction Method Complete for Refutation and Finite Satisfiability , 1998, JELIA.

[38]  Ullrich Hustadt,et al.  On the Relation of Resolution and Tableaux Proof Systems for Description Logics , 1999, IJCAI.