Using FLI maps for preliminary spacecraft trajectory design in multi-body environments

Fast Lyapunov Indicator (FLI) maps are presented as a tool for solving spacecraft preliminary trajectory design problems in multi-body environments with long-term stability requirements. In particular, the FLI maps are shown to provide a global overview of the dynamics in the restricted three-body problem that can guide mission designers in selecting long-term stable regions of phase space which are inherently more robust to model parameter perturbations. The FLI is also shown to numerically detect the normally hyperbolic manifolds associated with unstable periodic orbits. These, in turn, provide a global map of the principal heteroclinic connections between the various resonance regions which form the basic backbone of dynamical transfers design. Examples of maps and transfers are provided in the restricted three-body problem modeling the Jupiter–Europa system.

[1]  Kathleen C. Howell,et al.  Families of orbits in the vicinity of the collinear libration points , 1998 .

[2]  Elena Lega,et al.  On the Relationship Between Fast Lyapunov Indicator and Periodic Orbits for Continuous Flows , 2002 .

[3]  Gregory J. Whiffen,et al.  Exploration of distant retrograde orbits around Europa , 2005 .

[4]  L. D'Amario,et al.  Europa Orbiter Mission Trajectory Design , 1999 .

[5]  Alessandro Morbidelli,et al.  Modern celestial mechanics : aspects of solar system dynamics , 2002 .

[6]  Michel Henon,et al.  Numerical exploration of the restricted problem. VI. Hill's case: Non-periodic orbits. , 1970 .

[7]  E. Lega,et al.  FAST LYAPUNOV INDICATORS. APPLICATION TO ASTEROIDAL MOTION , 1997 .

[8]  Roberto Barrio,et al.  Spurious structures in chaos indicators maps , 2009 .

[9]  A. Giorgilli,et al.  Superexponential stability of KAM tori , 1995 .

[10]  R. Russell,et al.  Classification of the Distant Stability Regions at Europa , 2007 .

[11]  Bernold Fiedler,et al.  Ergodic theory, analysis, and efficient simulation of dynamical systems , 2001 .

[12]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[13]  on the relationship between fast lyapunov indicator and periodic orbits for symplectic mappings , 2001 .

[14]  Shane D. Ross,et al.  Connecting orbits and invariant manifolds in the spatial three-body problem , 2004 .

[15]  M. N. Vrahatis,et al.  Detecting order and chaos in Hamiltonian systems by the SALI method , 2004, nlin/0404058.

[16]  Martin W. Lo,et al.  The role of invariant manifolds in lowthrust trajectory design (part III) , 2004 .

[17]  Ryan P. Russell,et al.  Global search for planar and three-dimensional periodic orbits near Europa , 2006 .

[18]  Peter J. Sharer,et al.  Transfer trajectory design for the SOHO libration-point mission , 1992 .

[19]  E. Lega,et al.  Analysis of the Chaotic Behaviour of Orbits Diffusing along the Arnold Web , 2006 .

[20]  Elena Lega,et al.  On the numerical detection of the effective stability of chaotic motions in quasi-integrable systems , 2002 .

[21]  Jacques Laskar,et al.  Frequency Map and Global Dynamics in the Solar System I , 2001 .

[22]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[23]  Yungsun Hahn,et al.  Genesis mission design , 1998 .

[24]  Elena Lega,et al.  On the Structure of Symplectic Mappings. The Fast Lyapunov Indicator: a Very Sensitive Tool , 2000 .

[25]  Stephen Wiggins,et al.  KAM tori are very sticky: rigorous lower bounds on the time to move away from an invariant Lagrangian torus with linear flow , 1994 .

[26]  F. Bauer,et al.  Libration Orbit Mission Design: Applications of Numerical & Dynamical Methods , 2003 .

[27]  N. Jeremy Kasdin,et al.  Optimal out-of-ecliptic trajectories for space-borne observatories , 2001 .

[28]  R. Russell,et al.  On parking solutions around Europa , 2005 .

[29]  Elena Lega,et al.  Detection of Arnold diffusion in Hamiltonian systems , 2003 .

[30]  Shane D. Ross,et al.  Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. , 2000, Chaos.

[31]  J. Meiss,et al.  Exit times and transport for symplectic twist maps. , 1993, Chaos.

[32]  Carles Simó Global dynamics and fast indicators , 2001 .

[33]  V. Szebehely,et al.  Theory of Orbits: The Restricted Problem of Three Bodies , 1967 .

[34]  L. Healy,et al.  Painting the Phase Space Portrait of an Integrable Dynamical System , 1990, Science.

[35]  H. Broer,et al.  Global Analysis of Dynamical Systems , 2001 .

[36]  Shane D. Ross,et al.  Connecting orbits and invariant manifolds in the spatial restricted three-body problem , 2004 .

[37]  E. Eugene Callens,et al.  Development of a Snow Erosion Test Capability for the Hyperballistic Range , 1977 .

[38]  Christos Efthymiopoulos,et al.  Detection of Ordered and Chaotic Motion Using the Dynamical Spectra , 1999 .

[39]  Angel Jorba,et al.  A Methodology for the Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems , 1999, Exp. Math..

[40]  Unstable Resonant Orbits near Earth and Their Applications in Planetary Missions , 2004 .

[41]  Froeschle,et al.  Graphical evolution of the arnold web: from order to chaos , 2000, Science.

[42]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[43]  Robert W. Farquhar,et al.  Mission design for a halo orbiter of the Earth. , 1977 .

[44]  Shane D. Ross,et al.  Transport in Dynamical Astronomy and Multibody Problems , 2005, Int. J. Bifurc. Chaos.

[45]  G. Contopoulos,et al.  A fast method for distinguishing between ordered and chaotic orbits. , 1997 .