Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation

Abstract. We derive robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation. Here, robust means that the estimators yield global upper and local lower bounds on the error measured in the energy norm such that the ratio of the upper and lower bounds is bounded from below and from above by constants which do neither depend on any meshsize nor on the perturbation parameter. The estimators are based either on the evaluation of local residuals or on the solution of discrete local Dirichlet or Neumann problems.