Interaction potential models for bulk Zns, Zns nanoparticle, and Zns nanoparticle‐PMMA from first‐principles

An ab initio derived transferable polarizable force‐field has been developed for Zinc sulphide (ZnS) nanoparticle (NP) and ZnS NP‐PMMA nanocomposite. The structure and elastic constants of bulk ZnS using the new force‐field are within a few percent of experimental observables. The new force‐field show remarkable ability to reproduce structures and nucleation energies of nanoclusters (Zn1S1‐Zn12S12) as validated with that of the density functional theory calculations. A qualitative agreement of the radial distribution functions of ZnO, in a ZnS nanocluster‐PMMA system, obtained using molecular mechanics molecular dynamics (MD) and ab initio MD (AIMD) simulations indicates that the ZnS–PMMA interaction through ZnO bonding is explained satisfactorily by our force‐field. © 2015 Wiley Periodicals, Inc.

[1]  J. Banfield,et al.  Aggregation, Coarsening, and Phase Transformation in ZnS Nanoparticles Studied by Molecular Dynamics Simulations , 2004 .

[2]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[3]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[4]  T. Halgren,et al.  Polarizable force fields. , 2001, Current opinion in structural biology.

[5]  E. Rabani,et al.  Transferable pair potentials for CdS and ZnS crystals. , 2012, The Journal of chemical physics.

[6]  Chunxia Chen,et al.  Local Dynamics of Syndiotactic Poly(methyl methacrylate) Using Molecular Dynamics Simulation , 2006 .

[7]  R. Bhargava,et al.  Homogeneous precipitation of doped zinc sulfide nanocrystals for photonic applications , 1995 .

[8]  M. Cieplak,et al.  Interactions of aqueous amino acids and proteins with the (110) surface of ZnS in molecular dynamics simulations. , 2014, The Journal of chemical physics.

[9]  Pandey,et al.  Ab initio high-pressure structural and electronic properties of ZnS. , 1993, Physical review. B, Condensed matter.

[10]  Jin-Kook Lee,et al.  Preparation and characterization of ZnS based nano-crystalline particles for polymer light-emitting diodes ☆ , 2005 .

[11]  K. Chattopadhyay,et al.  Synthesis and optical characterization of polymer-capped nanocrystalline ZnS thin films by chemical process , 2006 .

[12]  M. Dove,et al.  Pair distribution functions calculated from interatomic potential models using the General Utility Lattice Program , 2007 .

[13]  Lei Guo,et al.  Controllable synthesis of ZnS/PMMA nanocomposite hybrids generated from functionalized ZnS quantum dots nanocrystals , 2007 .

[14]  C. Catlow,et al.  Surface Structures and Crystal Morphology of ZnS: Computational Study , 2002 .

[15]  T. Mak,et al.  Advanced Structural Inorganic Chemistry , 2008 .

[16]  C. Catlow,et al.  Experimental and computational studies of ZnS nanostructures , 2009 .

[17]  Jun Zhu,et al.  Pressure induced phase transition in ZnS , 2006 .

[18]  A. Qteish,et al.  Stability and structural properties of the SC16 phase of ZnS under high pressure , 2000 .

[19]  Darren J. Martin,et al.  Preparation and characterization of down shifting ZnS:Mn/PMMA nanocomposites for improving photovoltaic silicon solar cell efficiency , 2013 .

[20]  Gallagher,et al.  Optical properties of manganese-doped nanocrystals of ZnS. , 1994, Physical review letters.

[21]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[22]  D. Patidar,et al.  Effect of ZnS nanofiller and temperature on mechanical properties of poly(methyl methacrylate) , 2012 .

[23]  Donald G. Truhlar,et al.  Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods , 2010 .

[24]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[25]  Don Berlincourt,et al.  Electroelastic Properties of the Sulfides, Selenides, and Tellurides of Zinc and Cadmium , 1963 .

[26]  K. Chattopadhyay,et al.  Size-dependent optical and dielectric properties of nanocrystalline ZnS thin films synthesized via rf-magnetron sputtering technique , 2007 .

[27]  Martins,et al.  Pseudopotential plane-wave calculations for ZnS. , 1991, Physical review. B, Condensed matter.

[28]  R. Murugan,et al.  Electronic and structural properties of zinc chalcogenides ZnX (X=S, Se, Te) , 2003 .

[29]  Robert Allan Jackson,et al.  Computer simulation of the structure and defect properties of zinc sulfide , 1995 .

[30]  A. Authier,et al.  Physical properties of crystals , 2007 .

[31]  Robert Bruce Lindsay,et al.  Physical Properties of Crystals , 1957 .

[32]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[33]  N. Christensen,et al.  Elastic constants and deformation potentials of ZnS and ZnSe under pressure , 1998 .

[34]  C. Catlow,et al.  Computational study of the relative stabilities of ZnS clusters, for sizes between 1 and 4 nm , 2006 .

[35]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[36]  C. Catlow,et al.  Structure and properties of ZnS nanoclusters. , 2005, The journal of physical chemistry. B.

[37]  Chen Xiang-rong,et al.  First-principles calculations for electronic, optical and thermodynamic properties of ZnS , 2008 .

[38]  J. Gale,et al.  Interatomic potentials for the simulation of the zinc-blende and wurtzite forms of ZnS and CdS: Bulk structure, properties, and phase stability , 2004 .

[39]  Bai Yang,et al.  Preparation and characterization of ZnS–polymer nanocomposite films with high refractive index , 2003 .

[40]  J. Birman Electronic Energy Bands in ZnS: Potential in Zincblende and Wurtzite , 1958 .

[41]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[42]  Lu,et al.  Zinc-blende-wurtzite polytypism in semiconductors. , 1992, Physical review. B, Condensed matter.

[43]  R. Dovesi,et al.  Full piezoelectric tensors of wurtzite and zinc blende ZnO and ZnS by first-principles calculations , 2003 .

[44]  J. Banfield,et al.  Molecular Dynamics Simulations, Thermodynamic Analysis, and Experimental Study of Phase Stability of Zinc Sulfide Nanoparticles , 2003 .

[45]  Richard H. Friend,et al.  Conjugated polymers. New materials for optoelectronic devices , 2001 .

[46]  R. Bhargava,et al.  Doped nanocrystals of semiconductors - a new class of luminescent materials , 1994 .

[47]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[48]  A. W. Overhauser,et al.  Theory of the Dielectric Constants of Alkali Halide Crystals , 1958 .

[49]  T. Strand,et al.  ZnSe‐ZnSSe electro‐optic waveguide modulators , 1991 .

[50]  Daniele Gerion,et al.  Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and , 2004 .

[51]  Gertrud Beggerow,et al.  Numerical data and functional relationships in science and technology , 1976 .

[52]  Cai‐Feng Wang,et al.  In situ synthesis of transparent fluorescent ZnS–polymer nanocomposite hybrids through catalytic chain transfer polymerization technique , 2009 .

[53]  J. Banfield,et al.  Water-driven structure transformation in nanoparticles at room temperature , 2003, Nature.

[54]  Marvin J. Weber,et al.  CRC HANDBOOK of LASER SCIENCE and TECHNOLOGY , 1999 .

[55]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[56]  P. Snee,et al.  Efficient functionalization of aqueous CdSe/ZnS nanocrystals using small-molecule chemical activators. , 2011, Chemical communications.