Integrated Simulation Method Based on Multibody Dynamics for Production Design Verification in Ships and Offshore Structures

.......................................................................... i Nomenclature ................................................................

[1]  E. Hairer,et al.  Geometric numerical integration illustrated by the Störmer–Verlet method , 2003, Acta Numerica.

[2]  Sol Ha,et al.  Crane Modeling and Simulation in Offshore Structure Building Industry , 2014 .

[3]  Bing Yan,et al.  Durability Analysis on Hydraulic Suspension System of Modular Assembled Trailer , 2011 .

[4]  C. Lacoursière Ghosts and machines : regularized variational methods for interactive simulations of multibodies with dry frictional contacts , 2007 .

[5]  Ju-Hwan Cha,et al.  Dynamic response simulation of a heavy cargo suspended by a floating crane based on multibody system dynamics , 2010 .

[6]  Kwang-Phil Park,et al.  Development of a simulation framework and applications to new production processes in shipyards , 2012, Comput. Aided Des..

[7]  Javier Cuadrado,et al.  A collaborative benchmarking framework for multibody system dynamics , 2010, Engineering with Computers.

[8]  Hanke E. M. Eich Regularization Methods for Constrained Mechanical Multibody Systems , 1995 .

[9]  A. Shabana,et al.  DEVELOPMENT OF SIMPLE MODELS FOR THE ELASTIC FORCES IN THE ABSOLUTE NODAL CO-ORDINATE FORMULATION , 2000 .

[10]  Marcus A. Magnor,et al.  The Minimal Bounding Volume Hierarchy , 2010, VMV.

[11]  Rafael J. Martínez-Durá,et al.  Elevation cable modeling for interactive simulation of cranes , 2008, SCA '08.

[12]  Myung-Il Roh,et al.  Lifting simulation of an offshore supply vessel considering various operating conditions , 2016 .

[13]  X. Rui,et al.  Plate/shell element of variable thickness based on the absolute nodal coordinate formulation , 2010 .

[14]  René Weller,et al.  New Geometric Data Structures for Collision Detection and Haptics , 2013, Springer Series on Touch and Haptic Systems.

[15]  Roy Featherstone,et al.  Rigid Body Dynamics Algorithms , 2007 .

[16]  David E. Stewart,et al.  Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..

[17]  山田 祐,et al.  Open Dynamics Engine を用いたスノーボードロボットシミュレータの開発 , 2007 .

[18]  Gino van den Bergen A Fast and Robust GJK Implementation for Collision Detection of Convex Objects , 1999, J. Graphics, GPU, & Game Tools.

[19]  Eric Wey,et al.  Transportation Considerations in Module Design , 2014 .

[20]  Ivan Ali Structural modelling of offshore module for loadout, transportation and installation , 2016 .

[21]  Oleg Dmitrochenko,et al.  Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation , 2003 .

[22]  M. Anitescu,et al.  A Time-stepping Method for Stii Multibody Dynamics with Contact and Friction ‡ , 2022 .

[23]  A. G. Greenhill Analytical Mechanics , 1890, Nature.

[24]  Parviz E. Nikravesh,et al.  Computer-aided analysis of mechanical systems , 1988 .

[25]  Sol Ha,et al.  Multibody system dynamics simulator for process simulation of ships and offshore plants in shipyards , 2015, Adv. Eng. Softw..

[26]  A. Lew Variational time integrators in computational solid mechanics , 2003 .

[28]  Ju-Hwan Cha,et al.  Integrated simulation framework for the process planning of ships and offshore structures , 2010 .

[29]  U. Lugrís,et al.  A benchmarking system for MBS simulation software: Problem standardization and performance measurement , 2006 .

[30]  Myung-Il Roh,et al.  Simulation of load lifting with equalizers used in shipyards , 2016 .

[31]  Bernard P. Zeigler,et al.  Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems , 2000 .

[32]  Etsujiro Imanishi,et al.  Dynamic simulation of wire rope with contact , 2009 .

[33]  W. Cummins THE IMPULSE RESPONSE FUNCTION AND SHIP MOTIONS , 2010 .

[34]  Brian Mirtich,et al.  V-Clip: fast and robust polyhedral collision detection , 1998, TOGS.

[35]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[36]  S. Ham,et al.  Multibody dynamic analysis of a heavy load suspended by a floating crane with constraint-based wire rope , 2015 .

[37]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[38]  J. Mayo,et al.  Efficient Evaluation of the Elastic Forces and the Jacobian in the Absolute Nodal Coordinate Formulation , 2004 .

[39]  J-H Cha,et al.  Application of a topological modelling approach of multi-body system dynamics to simulation of multi-floating cranes in shipyards , 2010 .

[40]  Kwang-Phil Park,et al.  The flexible multibody dynamics of a floating offshore wind turbine in marine operations , 2017 .

[41]  J. Baumgarte Stabilization of constraints and integrals of motion in dynamical systems , 1972 .

[42]  Ming C. Lin,et al.  Accurate and Fast Proximity Queries Between Polyhedra Using Convex Surface Decomposition , 2001, Comput. Graph. Forum.

[43]  Namkug Ku,et al.  Dynamic response simulation of an offshore wind turbine suspended by a floating crane , 2015 .

[44]  Abderrahmane Kheddar,et al.  Fast Continuous Collision Detection between Rigid Bodies , 2002, Comput. Graph. Forum.

[45]  J. Marsden,et al.  Mechanical integrators derived from a discrete variational principle , 1997 .

[46]  S. Sathiya Keerthi,et al.  A fast procedure for computing the distance between complex objects in three-dimensional space , 1988, IEEE J. Robotics Autom..

[47]  Javier Cuadrado,et al.  Efficient and accurate simulation of the rope–sheave interaction in weight-lifting machines , 2011 .

[48]  Hyewon Lee,et al.  Block turnover simulation considering the interferences between the block and wire ropes in shipbuilding , 2016 .

[49]  Zhu Ming,et al.  Dynamic response analysis of offshore wind turbine installation suspended by a floating crane , 2017 .